这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

还能做得更快吗?

这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

当前回答

这是你和别人比较的方式。

# You have to list primes upto n
nums = xrange(2, n)
for i in range(2, 10):
    nums = filter(lambda s: s==i or s%i, nums)
print nums

这么简单……

其他回答

我可能迟到了,但必须为此添加自己的代码。它使用大约n/2的空间,因为我们不需要存储偶数,我还使用bitarray python模块,进一步大幅减少内存消耗,并允许计算所有高达1,000,000,000的质数

from bitarray import bitarray
def primes_to(n):
    size = n//2
    sieve = bitarray(size)
    sieve.setall(1)
    limit = int(n**0.5)
    for i in range(1,limit):
        if sieve[i]:
            val = 2*i+1
            sieve[(i+i*val)::val] = 0
    return [2] + [2*i+1 for i, v in enumerate(sieve) if v and i > 0]

python -m timeit -n10 -s "import euler" "euler.primes_to(1000000000)"
10 loops, best of 3: 46.5 sec per loop

这是在64bit 2.4GHZ MAC OSX 10.8.3上运行的

我猜最快的方法是在代码中硬编码质数。

因此,为什么不编写一个缓慢的脚本,生成另一个源文件,其中包含所有数字,然后在运行实际程序时导入该源文件呢?

当然,只有当你在编译时知道N的上限时,这才有效,但这是(几乎)所有项目欧拉问题的情况。

 

PS:我可能错了,虽然解析源的硬连接质数比计算它们要慢,但据我所知,Python是从编译的.pyc文件运行的,所以在这种情况下,读取一个包含所有质数到N的二进制数组应该是非常快的。

我很惊讶居然没人提到numba。

该版本在2.47 ms±36.5µs内达到1M标记。

几年前,维基百科页面上出现了一个阿特金筛子的伪代码。这已经不存在了,参考阿特金筛似乎是一个不同的算法。一个2007/03/01版本的维基百科页面(Primer number as 2007-03-01)显示了我用作参考的伪代码。

import numpy as np
from numba import njit

@njit
def nb_primes(n):
    # Generates prime numbers 2 <= p <= n
    # Atkin's sieve -- see https://en.wikipedia.org/w/index.php?title=Prime_number&oldid=111775466
    sqrt_n = int(np.sqrt(n)) + 1

    # initialize the sieve
    s = np.full(n + 1, -1, dtype=np.int8)
    s[2] = 1
    s[3] = 1

    # put in candidate primes:
    # integers which have an odd number of
    # representations by certain quadratic forms
    for x in range(1, sqrt_n):
        x2 = x * x
        for y in range(1, sqrt_n):
            y2 = y * y
            k = 4 * x2 + y2
            if k <= n and (k % 12 == 1 or k % 12 == 5): s[k] *= -1
            k = 3 * x2 + y2
            if k <= n and (k % 12 == 7): s[k] *= -1
            k = 3 * x2 - y2
            if k <= n and x > y and k % 12 == 11: s[k] *= -1

    # eliminate composites by sieving
    for k in range(5, sqrt_n):
        if s[k]:
            k2 = k*k
            # k is prime, omit multiples of its square; this is sufficient because
            # composites which managed to get on the list cannot be square-free
            for i in range(1, n // k2 + 1):
                j = i * k2 # j ∈ {k², 2k², 3k², ..., n}
                s[j] = -1
    return np.nonzero(s>0)[0]

# initial run for "compilation" 
nb_primes(10)

时机

In[10]:
%timeit nb_primes(1_000_000)

Out[10]:
2.47 ms ± 36.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In[11]:
%timeit nb_primes(10_000_000)

Out[11]:
33.4 ms ± 373 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In[12]:
%timeit nb_primes(100_000_000)

Out[12]:
828 ms ± 5.64 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

随着时间的推移,我收集了几个质数筛子。我电脑上最快的是这样的:

from time import time
# 175 ms for all the primes up to the value 10**6
def primes_sieve(limit):
    a = [True] * limit
    a[0] = a[1] = False
    #a[2] = True
    for n in xrange(4, limit, 2):
        a[n] = False
    root_limit = int(limit**.5)+1
    for i in xrange(3,root_limit):
        if a[i]:
            for n in xrange(i*i, limit, 2*i):
                a[n] = False
    return a

LIMIT = 10**6
s=time()
primes = primes_sieve(LIMIT)
print time()-s

使用Sundaram的Sieve,我想我打破了pure-Python的记录:

def sundaram3(max_n):
    numbers = range(3, max_n+1, 2)
    half = (max_n)//2
    initial = 4

    for step in xrange(3, max_n+1, 2):
        for i in xrange(initial, half, step):
            numbers[i-1] = 0
        initial += 2*(step+1)

        if initial > half:
            return [2] + filter(None, numbers)

Comparasion:

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.get_primes_erat(1000000)"
10 loops, best of 3: 710 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.daniel_sieve_2(1000000)"
10 loops, best of 3: 435 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.sundaram3(1000000)"
10 loops, best of 3: 327 msec per loop