这是我能想到的最好的算法。
def get_primes(n):
numbers = set(range(n, 1, -1))
primes = []
while numbers:
p = numbers.pop()
primes.append(p)
numbers.difference_update(set(range(p*2, n+1, p)))
return primes
>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import get_primes').timeit(1)
1.1499958793645562
还能做得更快吗?
这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:
>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True
这是使用存储列表查找质数的一种优雅而简单的解决方案。从4个变量开始,你只需要测试除数的奇数质数,你只需要测试你要测试的质数的一半(测试9,11,13是否能整除17没有意义)。它将先前存储的质数作为除数进行测试。
# Program to calculate Primes
primes = [1,3,5,7]
for n in range(9,100000,2):
for x in range(1,(len(primes)/2)):
if n % primes[x] == 0:
break
else:
primes.append(n)
print primes
在Pure Python中最快的质数筛分:
from itertools import compress
def half_sieve(n):
"""
Returns a list of prime numbers less than `n`.
"""
if n <= 2:
return []
sieve = bytearray([True]) * (n // 2)
for i in range(3, int(n ** 0.5) + 1, 2):
if sieve[i // 2]:
sieve[i * i // 2::i] = bytearray((n - i * i - 1) // (2 * i) + 1)
primes = list(compress(range(1, n, 2), sieve))
primes[0] = 2
return primes
我优化了埃拉托色尼筛子的速度和内存。
基准
from time import clock
import platform
def benchmark(iterations, limit):
start = clock()
for x in range(iterations):
half_sieve(limit)
end = clock() - start
print(f'{end/iterations:.4f} seconds for primes < {limit}')
if __name__ == '__main__':
print(platform.python_version())
print(platform.platform())
print(platform.processor())
it = 10
for pw in range(4, 9):
benchmark(it, 10**pw)
输出
>>> 3.6.7
>>> Windows-10-10.0.17763-SP0
>>> Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
>>> 0.0003 seconds for primes < 10000
>>> 0.0021 seconds for primes < 100000
>>> 0.0204 seconds for primes < 1000000
>>> 0.2389 seconds for primes < 10000000
>>> 2.6702 seconds for primes < 100000000
在写这篇文章的时候,这是最快的工作解决方案(至少在我的机器上是这样)。它同时使用numpy和bitarray,并受到这个答案的primesfrom2to的启发。
import numpy as np
from bitarray import bitarray
def bit_primes(n):
bit_sieve = bitarray(n // 3 + (n % 6 == 2))
bit_sieve.setall(1)
bit_sieve[0] = False
for i in range(int(n ** 0.5) // 3 + 1):
if bit_sieve[i]:
k = 3 * i + 1 | 1
bit_sieve[k * k // 3::2 * k] = False
bit_sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = False
np_sieve = np.unpackbits(np.frombuffer(bit_sieve.tobytes(), dtype=np.uint8)).view(bool)
return np.concatenate(((2, 3), ((3 * np.flatnonzero(np_sieve) + 1) | 1)))
下面是与素数from2to的比较,它之前被发现是unutbu比较中最快的解:
python3 -m timeit -s "import fast_primes" "fast_primes.bit_primes(1000000)"
200 loops, best of 5: 1.19 msec per loop
python3 -m timeit -s "import fast_primes" "fast_primes.primesfrom2to(1000000)"
200 loops, best of 5: 1.23 msec per loop
对于寻找100万以下的质数,bit_primes稍微快一些。
n值越大,差异就越大。在某些情况下,bit_primes的速度是原来的两倍多:
python3 -m timeit -s "import fast_primes" "fast_primes.bit_primes(500_000_000)"
1 loop, best of 5: 540 msec per loop
python3 -m timeit -s "import fast_primes" "fast_primes.primesfrom2to(500_000_000)"
1 loop, best of 5: 1.15 sec per loop
作为参考,以下是primesfrom2to I的最小修改版本(适用于Python 3):
def primesfrom2to(n):
# https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Input n>=6, Returns a array of primes, 2 <= p < n"""
sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool)
sieve[0] = False
for i in range(int(n ** 0.5) // 3 + 1):
if sieve[i]:
k = 3 * i + 1 | 1
sieve[((k * k) // 3)::2 * k] = False
sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = False
return np.r_[2, 3, ((3 * np.nonzero(sieve)[0] + 1) | 1)]
我可能迟到了,但必须为此添加自己的代码。它使用大约n/2的空间,因为我们不需要存储偶数,我还使用bitarray python模块,进一步大幅减少内存消耗,并允许计算所有高达1,000,000,000的质数
from bitarray import bitarray
def primes_to(n):
size = n//2
sieve = bitarray(size)
sieve.setall(1)
limit = int(n**0.5)
for i in range(1,limit):
if sieve[i]:
val = 2*i+1
sieve[(i+i*val)::val] = 0
return [2] + [2*i+1 for i, v in enumerate(sieve) if v and i > 0]
python -m timeit -n10 -s "import euler" "euler.primes_to(1000000000)"
10 loops, best of 3: 46.5 sec per loop
这是在64bit 2.4GHZ MAC OSX 10.8.3上运行的
你有一个更快的代码和最简单的代码生成质数。
但对于更大的数字,当n=10000, 10000000时,它不起作用,可能是。pop()方法失败了
考虑:N是质数吗?
case 1:
You got some factors of N,
for i in range(2, N):
If N is prime loop is performed for ~(N-2) times. else less number of times
case 2:
for i in range(2, int(math.sqrt(N)):
Loop is performed for almost ~(sqrt(N)-2) times if N is prime else will break somewhere
case 3:
Better We Divide N With Only number of primes<=sqrt(N)
Where loop is performed for only π(sqrt(N)) times
π(sqrt(N)) << sqrt(N) as N increases
from math import sqrt
from time import *
prime_list = [2]
n = int(input())
s = time()
for n0 in range(2,n+1):
for i0 in prime_list:
if n0%i0==0:
break
elif i0>=int(sqrt(n0)):
prime_list.append(n0)
break
e = time()
print(e-s)
#print(prime_list); print(f'pi({n})={len(prime_list)}')
print(f'{n}: {len(prime_list)}, time: {e-s}')
Output
100: 25, time: 0.00010275840759277344
1000: 168, time: 0.0008606910705566406
10000: 1229, time: 0.015588521957397461
100000: 9592, time: 0.023436546325683594
1000000: 78498, time: 4.1965954303741455
10000000: 664579, time: 109.24591708183289
100000000: 5761455, time: 2289.130858898163
小于1000似乎很慢,但小于10^6我认为更快。
然而,我无法理解时间的复杂性。
下面是我在Python中通常用来生成质数的代码:
$ python -mtimeit -s'import sieve' 'sieve.sieve(1000000)'
10 loops, best of 3: 445 msec per loop
$ cat sieve.py
from math import sqrt
def sieve(size):
prime=[True]*size
rng=xrange
limit=int(sqrt(size))
for i in rng(3,limit+1,+2):
if prime[i]:
prime[i*i::+i]=[False]*len(prime[i*i::+i])
return [2]+[i for i in rng(3,size,+2) if prime[i]]
if __name__=='__main__':
print sieve(100)
它不能与这里发布的更快的解决方案竞争,但至少它是纯python。
谢谢你提出这个问题。我今天真的学到了很多东西。