这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

还能做得更快吗?

这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

当前回答

对于最快的代码,numpy解决方案是最好的。不过,出于纯粹的学术原因,我发布了我的纯python版本,它比上面发布的食谱版本快不到50%。由于我将整个列表放在内存中,所以需要足够的空间来容纳所有内容,但它的可伸缩性似乎相当好。

def daniel_sieve_2(maxNumber):
    """
    Given a number, returns all numbers less than or equal to
    that number which are prime.
    """
    allNumbers = range(3, maxNumber+1, 2)
    for mIndex, number in enumerate(xrange(3, maxNumber+1, 2)):
        if allNumbers[mIndex] == 0:
            continue
        # now set all multiples to 0
        for index in xrange(mIndex+number, (maxNumber-3)/2+1, number):
            allNumbers[index] = 0
    return [2] + filter(lambda n: n!=0, allNumbers)

结果是:

>>>mine = timeit.Timer("daniel_sieve_2(1000000)",
...                    "from sieves import daniel_sieve_2")
>>>prev = timeit.Timer("get_primes_erat(1000000)",
...                    "from sieves import get_primes_erat")
>>>print "Mine: {0:0.4f} ms".format(min(mine.repeat(3, 1))*1000)
Mine: 428.9446 ms
>>>print "Previous Best {0:0.4f} ms".format(min(prev.repeat(3, 1))*1000)
Previous Best 621.3581 ms

其他回答

我在这里找到了一个纯Python 2素数生成器,在Willy Good的评论中,它比rwh2_primes快。

def primes235(limit):
yield 2; yield 3; yield 5
if limit < 7: return
modPrms = [7,11,13,17,19,23,29,31]
gaps = [4,2,4,2,4,6,2,6,4,2,4,2,4,6,2,6] # 2 loops for overflow
ndxs = [0,0,0,0,1,1,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,6,6,7,7,7,7,7,7]
lmtbf = (limit + 23) // 30 * 8 - 1 # integral number of wheels rounded up
lmtsqrt = (int(limit ** 0.5) - 7)
lmtsqrt = lmtsqrt // 30 * 8 + ndxs[lmtsqrt % 30] # round down on the wheel
buf = [True] * (lmtbf + 1)
for i in xrange(lmtsqrt + 1):
    if buf[i]:
        ci = i & 7; p = 30 * (i >> 3) + modPrms[ci]
        s = p * p - 7; p8 = p << 3
        for j in range(8):
            c = s // 30 * 8 + ndxs[s % 30]
            buf[c::p8] = [False] * ((lmtbf - c) // p8 + 1)
            s += p * gaps[ci]; ci += 1
for i in xrange(lmtbf - 6 + (ndxs[(limit - 7) % 30])): # adjust for extras
    if buf[i]: yield (30 * (i >> 3) + modPrms[i & 7])

我的结果:

$ time ./prime_rwh2.py 1e8
5761455 primes found < 1e8

real    0m3.201s
user    0m2.609s
sys     0m0.578s
$ time ./prime_wheel.py 1e8
5761455 primes found < 1e8

real    0m2.710s
user    0m2.469s
sys     0m0.219s

...在我最近的中档笔记本电脑(i5 8265U 1.6GHz)上运行Ubuntu Win 10。

这是一个mod 30轮筛,跳过倍数2,3和5。对我来说,它在2.5e9左右的时候工作得很好,那时我的笔记本电脑开始用完8G内存,需要大量交换。

我喜欢对30取余,因为它只有8个余数不是2 3 5的倍数。这允许使用移位和“&”进行乘法,除法和mod,并应该允许将一个mod 30轮的结果打包到一个字节中。我把威利的代码变成了一个分段的mod 30轮筛,以消除大N的抖动,并张贴在这里。

还有一个更快的Javascript版本,它是分段的,并使用了一个mod 210轮(没有2,3,5或7的倍数)@GordonBGood与一个深入的解释,这对我很有用。

对于足够大的N,真正最快的解决方案是下载一个预先计算的质数列表,将其存储为元组,并执行如下操作:

for pos,i in enumerate(primes):
    if i > N:
        print primes[:pos]

如果只有N >个质数[-1],则计算更多的质数并将新列表保存在代码中,以便下次同样快。

要跳出思维定势。

下面是一个使用python的列表推导式生成质数的有趣技术(但不是最有效的):

noprimes = [j for i in range(2, 8) for j in range(i*2, 50, i)]
primes = [x for x in range(2, 50) if x not in noprimes]

如果你接受itertools,但不接受numpy,这里有一个针对Python 3的rwh_primes2的改编版本,它在我的机器上运行速度大约是原来的两倍。唯一的实质性变化是使用bytearray而不是列表来表示布尔值,并使用压缩而不是列表推导来构建最终列表。(如果可以的话,我会把这句话作为moarningsun之类的评论。)

import itertools
izip = itertools.zip_longest
chain = itertools.chain.from_iterable
compress = itertools.compress
def rwh_primes2_python3(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    zero = bytearray([False])
    size = n//3 + (n % 6 == 2)
    sieve = bytearray([True]) * size
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        start = (k*k+4*k-2*k*(i&1))//3
        sieve[(k*k)//3::2*k]=zero*((size - (k*k)//3 - 1) // (2 * k) + 1)
        sieve[  start ::2*k]=zero*((size -   start  - 1) // (2 * k) + 1)
    ans = [2,3]
    poss = chain(izip(*[range(i, n, 6) for i in (1,5)]))
    ans.extend(compress(poss, sieve))
    return ans

比较:

>>> timeit.timeit('primes.rwh_primes2(10**6)', setup='import primes', number=1)
0.0652179726976101
>>> timeit.timeit('primes.rwh_primes2_python3(10**6)', setup='import primes', number=1)
0.03267321276325674

and

>>> timeit.timeit('primes.rwh_primes2(10**8)', setup='import primes', number=1)
6.394284538007014
>>> timeit.timeit('primes.rwh_primes2_python3(10**8)', setup='import primes', number=1)
3.833829450302801

这是你和别人比较的方式。

# You have to list primes upto n
nums = xrange(2, n)
for i in range(2, 10):
    nums = filter(lambda s: s==i or s%i, nums)
print nums

这么简单……