我只是好奇,为了在二进制中表示-1,是否有一个原因,使用了2的补码:翻转位并加1?
-1由11111111(2的补码)表示,而不是(对我来说更直观)10000001,10000001是二进制1,第一位为负标志。
免责声明:我的工作不依赖二进制算术!
我只是好奇,为了在二进制中表示-1,是否有一个原因,使用了2的补码:翻转位并加1?
-1由11111111(2的补码)表示,而不是(对我来说更直观)10000001,10000001是二进制1,第一位为负标志。
免责声明:我的工作不依赖二进制算术!
当前回答
你的目的并不是把二进制数的所有位都颠倒过来。实际上就是用1减去每一位。这只是一个幸运的巧合,1减1得0,1减0得1。所以翻转位有效地执行了这个减法。
但为什么每个数字的差值都是1呢?你不是。您的实际目的是计算给定的二进制数与另一个具有相同位数但只包含1的二进制数的差值。例如,如果您的数字是10110001,当您翻转所有这些位时,您实际上是在计算(11111111 - 10110001)。
这解释了计算二的补的第一步。现在让我们在图中加入第二步——添加1。
将上述二进制方程加1:
11111111-10110001 + 1
你得到了什么?这样的:
100000000-10110001
这是最终方程。通过执行这两个步骤,你试图找到这个,最终的区别:二进制数减去另一个二进制数,多出一位,并且除最高位外都包含零。
但我们为什么要追求这种差异呢?好吧,从现在开始,我想你最好去读维基百科的文章。
其他回答
为什么用Two2的补语系统来表示负数,而不是用One的补语系统,一个令人满意的答案是 二的补语系统解决了一的补语系统中存在的表示负数的0的多重表示和对进位的需要。
欲了解更多信息,请访问https://en.wikipedia.org/wiki/Signed_number_representations
用于末端绕行访问 https://en.wikipedia.org/wiki/End-around_carry
A major advantage of two's-complement representation which hasn't yet been mentioned here is that the lower bits of a two's-complement sum, difference, or product are dependent only upon the corresponding bits of the operands. The reason that the 8 bit signed value for -1 is 11111111 is that subtracting any integer whose lowest 8 bits are 00000001 from any other integer whose lowest 8 bits are 0000000 will yield an integer whose lowest 8 bits are 11111111. Mathematically, the value -1 would be an infinite string of 1's, but all values within the range of a particular integer type will either be all 1's or all 0's past a certain point, so it's convenient for computers to "sign-extend" the most significant bit of a number as though it represented an infinite number of 1's or 0's.
Two's-complement is just about the only signed-number representation that works well when dealing with types larger than a binary machine's natural word size, since when performing addition or subtraction, code can fetch the lowest chunk of each operand, compute the lowest chunk of the result, and store that, then load the next chunk of each operand, compute the next chunk of the result, and store that, etc. Thus, even a processor which requires all additions and subtractions to go through a single 8-bit register can handle 32-bit signed numbers reasonably efficiently (slower than with a 32-bit register, of course, but still workable).
当使用C标准所允许的任何其他有符号表示时,结果的每一位都可能受到操作数的任何位的影响,这就需要将整个值一次保存在寄存器中,或者在计算之后进行额外的步骤,至少在某些情况下,需要读取、修改和重写结果的每个块。
该操作的通常实现是“翻转位并加1”,但有另一种定义它的方式可能使其原理更清楚。2的补数是通常的无符号表示形式,其中每一位控制2的下一次方,并使最有效项为负。
取8位值a7 a6 a5 a4 a3 a2 a1 a0
通常的无符号二进制解释是: 27*a7 + 26*a6 + 25*a5 + 24*a4 + 23*a3 + 22*a2 + 21*a1 + 20*a0 = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255
两人的补充解释是: -27*a7 + 26*a6 + 25*a5 + 24*a4 + 23*a3 + 22*a2 + 21*a1 + 20*a0 = -128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = -1
其他任何位都不会改变含义,并且进位到a7是“溢出”,不期望工作,所以几乎所有的算术操作都可以工作而不需要修改(正如其他人所注意到的)。符号大小通常检查符号位,并使用不同的逻辑。
这是为了简化数字的和和和差。2的补数中一个负数和一个正数的和与正常方式的和是一样的。
维基百科说明了一切:
二补系统的优点是不需要加减电路检查操作数的符号来决定是加还是减。这一特性使系统实现更简单,能够轻松地处理更高精度的算术。此外,零只有一种表示,避免了与负零相关的微妙之处,这种微妙之处存在于补体系统中。
换句话说,无论数字是否为负,加法都是一样的。