我只是好奇,为了在二进制中表示-1,是否有一个原因,使用了2的补码:翻转位并加1?

-1由11111111(2的补码)表示,而不是(对我来说更直观)10000001,10000001是二进制1,第一位为负标志。

免责声明:我的工作不依赖二进制算术!


当前回答

尽管这个问题已经很老了,但还是让我说说我的看法。

在我解释这个之前,让我们回到基础上来。2'补码等于1'补码+ 1。 那么1的补是什么,它的加法意义是什么。

任何n位数和它的1的补数的和给出了可以用这n位表示的最大可能的数。 例子:

 0010 (2 in 4 bit system)
+1101 (1's complement of 2)
___________________________
 1111  (the highest number that we can represent by 4 bits)

现在如果我们尝试在结果中再加1会发生什么。这将导致溢出。

结果将是1 000,即0(因为我们处理的是4位数字,(左边的1是溢出)

So ,

Any n-bit number + its 1's complement = max n-bit number
Any n-bit number + its 1'complement + 1 = 0 ( as explained above, overflow will occur as we are adding 1 to max n-bit number)

于是有人决定把1的补体+ 1称为2'补体。所以上面的表述变成: 任何n位数+它的2的补= 0 也就是说2对一个数的补= -(该数的补)

所有这一切又产生了一个问题,为什么我们只能使用n位中的(n-1)来表示正数,为什么最左边的第n位表示符号(最左边的0表示+ve个数字,1表示-ve个数字)。例如,为什么我们在Java中只使用int的前31位来表示正数,如果第32位是1,它是-ve数。

 1100 (lets assume 12 in 4 bit system)
+0100(2's complement of 12)
___________________________

1 0000(结果为0,进位1溢出)

因此(n + 2'补n) = 0的方程组仍然成立。这里唯一的歧义是2对12的补码是0100,它也模糊地表示+8,而不是在2s补码系统中表示-12。

如果正数的最左边总是有一个0,这个问题就可以解决了。在这种情况下,它们的2的补位总是在最左边有一个1,我们就不会有相同的位集表示2的补位数和+ve数的模糊性。

其他回答

这是为了简化数字的和和和差。2的补数中一个负数和一个正数的和与正常方式的和是一样的。

有不同类型的表示,它们是:

无符号数表示 有符号数字表示 补体表示 二补体表示法

无符号数字表示,仅用于表示正数

有符号的数字表示,用来表示正数和负数。在有符号数表示中,MSB位表示符号位,其余位表示数字。当MSB为0时表示数字为正,当MSB为1时表示数字为负。

有符号数表示的问题是0有两个值。

补码表示法的问题是0有两个值。

但如果我们使用2的补体表示,那么0就只有一个值,这就是为什么我们用2的补体形式表示负数。

来源:负数为什么以二进制补码形式存储

使用2的补码是因为它更容易在电路中实现,也不允许负零。

如果有x位,2的补码范围从+(2^x/2+1)到-(2^x/2)。补码将从+(2^x/2)到-(2^x/2),但允许负数为零(0000在4位1的补码系统中等于1000)。

2的补语允许负数和正数相加,而不需要任何特殊的逻辑。

如果你想用你的方法做1和-1相加 10000001 (1) + 00000001 (1) 你得到 10000010 (2)

相反,通过使用2的补数,我们可以相加

11111111 (1) + 00000001 (1) 你得到 00000000 (0)

减法也是如此。

同样,如果你试着用6减去4(两个正数),你可以用2补4,然后把两者相加6 + (-4)= 6 -4 = 2

这意味着正数和负数的减法和加法都可以由cpu中的同一个电路完成。

你的目的并不是把二进制数的所有位都颠倒过来。实际上就是用1减去每一位。这只是一个幸运的巧合,1减1得0,1减0得1。所以翻转位有效地执行了这个减法。

但为什么每个数字的差值都是1呢?你不是。您的实际目的是计算给定的二进制数与另一个具有相同位数但只包含1的二进制数的差值。例如,如果您的数字是10110001,当您翻转所有这些位时,您实际上是在计算(11111111 - 10110001)。

这解释了计算二的补的第一步。现在让我们在图中加入第二步——添加1。

将上述二进制方程加1:

11111111-10110001 + 1

你得到了什么?这样的:

100000000-10110001

这是最终方程。通过执行这两个步骤,你试图找到这个,最终的区别:二进制数减去另一个二进制数,多出一位,并且除最高位外都包含零。

但我们为什么要追求这种差异呢?好吧,从现在开始,我想你最好去读维基百科的文章。