我只是好奇,为了在二进制中表示-1,是否有一个原因,使用了2的补码:翻转位并加1?
-1由11111111(2的补码)表示,而不是(对我来说更直观)10000001,10000001是二进制1,第一位为负标志。
免责声明:我的工作不依赖二进制算术!
我只是好奇,为了在二进制中表示-1,是否有一个原因,使用了2的补码:翻转位并加1?
-1由11111111(2的补码)表示,而不是(对我来说更直观)10000001,10000001是二进制1,第一位为负标志。
免责声明:我的工作不依赖二进制算术!
当前回答
尽管这个问题已经很老了,但还是让我说说我的看法。
在我解释这个之前,让我们回到基础上来。2'补码等于1'补码+ 1。 那么1的补是什么,它的加法意义是什么。
任何n位数和它的1的补数的和给出了可以用这n位表示的最大可能的数。 例子:
0010 (2 in 4 bit system)
+1101 (1's complement of 2)
___________________________
1111 (the highest number that we can represent by 4 bits)
现在如果我们尝试在结果中再加1会发生什么。这将导致溢出。
结果将是1 000,即0(因为我们处理的是4位数字,(左边的1是溢出)
So ,
Any n-bit number + its 1's complement = max n-bit number
Any n-bit number + its 1'complement + 1 = 0 ( as explained above, overflow will occur as we are adding 1 to max n-bit number)
于是有人决定把1的补体+ 1称为2'补体。所以上面的表述变成: 任何n位数+它的2的补= 0 也就是说2对一个数的补= -(该数的补)
所有这一切又产生了一个问题,为什么我们只能使用n位中的(n-1)来表示正数,为什么最左边的第n位表示符号(最左边的0表示+ve个数字,1表示-ve个数字)。例如,为什么我们在Java中只使用int的前31位来表示正数,如果第32位是1,它是-ve数。
1100 (lets assume 12 in 4 bit system)
+0100(2's complement of 12)
___________________________
1 0000(结果为0,进位1溢出)
因此(n + 2'补n) = 0的方程组仍然成立。这里唯一的歧义是2对12的补码是0100,它也模糊地表示+8,而不是在2s补码系统中表示-12。
如果正数的最左边总是有一个0,这个问题就可以解决了。在这种情况下,它们的2的补位总是在最左边有一个1,我们就不会有相同的位集表示2的补位数和+ve数的模糊性。
其他回答
使用2的补码是因为它更容易在电路中实现,也不允许负零。
如果有x位,2的补码范围从+(2^x/2+1)到-(2^x/2)。补码将从+(2^x/2)到-(2^x/2),但允许负数为零(0000在4位1的补码系统中等于1000)。
用补法执行减法的优点是减少了硬件 的复杂性。不需要不同的数字电路来进行加减法运算 加法和减法只能由加法器执行。
A major advantage of two's-complement representation which hasn't yet been mentioned here is that the lower bits of a two's-complement sum, difference, or product are dependent only upon the corresponding bits of the operands. The reason that the 8 bit signed value for -1 is 11111111 is that subtracting any integer whose lowest 8 bits are 00000001 from any other integer whose lowest 8 bits are 0000000 will yield an integer whose lowest 8 bits are 11111111. Mathematically, the value -1 would be an infinite string of 1's, but all values within the range of a particular integer type will either be all 1's or all 0's past a certain point, so it's convenient for computers to "sign-extend" the most significant bit of a number as though it represented an infinite number of 1's or 0's.
Two's-complement is just about the only signed-number representation that works well when dealing with types larger than a binary machine's natural word size, since when performing addition or subtraction, code can fetch the lowest chunk of each operand, compute the lowest chunk of the result, and store that, then load the next chunk of each operand, compute the next chunk of the result, and store that, etc. Thus, even a processor which requires all additions and subtractions to go through a single 8-bit register can handle 32-bit signed numbers reasonably efficiently (slower than with a 32-bit register, of course, but still workable).
当使用C标准所允许的任何其他有符号表示时,结果的每一位都可能受到操作数的任何位的影响,这就需要将整个值一次保存在寄存器中,或者在计算之后进行额外的步骤,至少在某些情况下,需要读取、修改和重写结果的每个块。
维基百科说明了一切:
二补系统的优点是不需要加减电路检查操作数的符号来决定是加还是减。这一特性使系统实现更简单,能够轻松地处理更高精度的算术。此外,零只有一种表示,避免了与负零相关的微妙之处,这种微妙之处存在于补体系统中。
换句话说,无论数字是否为负,加法都是一样的。
我们对加减法都只做加法运算。我们将第二个操作数与第一个操作数相加。对于减法,我们将第二个操作数的2的补数与第一个操作数相加。
对于2的补码表示,我们不需要单独的数字组件,只使用加法器和补法器。