我只是好奇,为了在二进制中表示-1,是否有一个原因,使用了2的补码:翻转位并加1?

-1由11111111(2的补码)表示,而不是(对我来说更直观)10000001,10000001是二进制1,第一位为负标志。

免责声明:我的工作不依赖二进制算术!


当前回答

扩展一下其他的答案:

在two's complement中

加法与普通正整数加法的原理相同。 减法也不会变 乘法!

"组织"需要不同的机制。

所有这些都是正确的,因为2的补是普通的模算术,我们选择通过减去模来看待一些负数。

其他回答

扩展一下其他的答案:

在two's complement中

加法与普通正整数加法的原理相同。 减法也不会变 乘法!

"组织"需要不同的机制。

所有这些都是正确的,因为2的补是普通的模算术,我们选择通过减去模来看待一些负数。

尽管这个问题已经很老了,但还是让我说说我的看法。

在我解释这个之前,让我们回到基础上来。2'补码等于1'补码+ 1。 那么1的补是什么,它的加法意义是什么。

任何n位数和它的1的补数的和给出了可以用这n位表示的最大可能的数。 例子:

 0010 (2 in 4 bit system)
+1101 (1's complement of 2)
___________________________
 1111  (the highest number that we can represent by 4 bits)

现在如果我们尝试在结果中再加1会发生什么。这将导致溢出。

结果将是1 000,即0(因为我们处理的是4位数字,(左边的1是溢出)

So ,

Any n-bit number + its 1's complement = max n-bit number
Any n-bit number + its 1'complement + 1 = 0 ( as explained above, overflow will occur as we are adding 1 to max n-bit number)

于是有人决定把1的补体+ 1称为2'补体。所以上面的表述变成: 任何n位数+它的2的补= 0 也就是说2对一个数的补= -(该数的补)

所有这一切又产生了一个问题,为什么我们只能使用n位中的(n-1)来表示正数,为什么最左边的第n位表示符号(最左边的0表示+ve个数字,1表示-ve个数字)。例如,为什么我们在Java中只使用int的前31位来表示正数,如果第32位是1,它是-ve数。

 1100 (lets assume 12 in 4 bit system)
+0100(2's complement of 12)
___________________________

1 0000(结果为0,进位1溢出)

因此(n + 2'补n) = 0的方程组仍然成立。这里唯一的歧义是2对12的补码是0100,它也模糊地表示+8,而不是在2s补码系统中表示-12。

如果正数的最左边总是有一个0,这个问题就可以解决了。在这种情况下,它们的2的补位总是在最左边有一个1,我们就不会有相同的位集表示2的补位数和+ve数的模糊性。

有不同类型的表示,它们是:

无符号数表示 有符号数字表示 补体表示 二补体表示法

无符号数字表示,仅用于表示正数

有符号的数字表示,用来表示正数和负数。在有符号数表示中,MSB位表示符号位,其余位表示数字。当MSB为0时表示数字为正,当MSB为1时表示数字为负。

有符号数表示的问题是0有两个值。

补码表示法的问题是0有两个值。

但如果我们使用2的补体表示,那么0就只有一个值,这就是为什么我们用2的补体形式表示负数。

来源:负数为什么以二进制补码形式存储

维基百科说明了一切:

二补系统的优点是不需要加减电路检查操作数的符号来决定是加还是减。这一特性使系统实现更简单,能够轻松地处理更高精度的算术。此外,零只有一种表示,避免了与负零相关的微妙之处,这种微妙之处存在于补体系统中。

换句话说,无论数字是否为负,加法都是一样的。

这是为了简化数字的和和和差。2的补数中一个负数和一个正数的和与正常方式的和是一样的。