我只是好奇,为了在二进制中表示-1,是否有一个原因,使用了2的补码:翻转位并加1?

-1由11111111(2的补码)表示,而不是(对我来说更直观)10000001,10000001是二进制1,第一位为负标志。

免责声明:我的工作不依赖二进制算术!


当前回答

2的补语允许负数和正数相加,而不需要任何特殊的逻辑。

如果你想用你的方法做1和-1相加 10000001 (1) + 00000001 (1) 你得到 10000010 (2)

相反,通过使用2的补数,我们可以相加

11111111 (1) + 00000001 (1) 你得到 00000000 (0)

减法也是如此。

同样,如果你试着用6减去4(两个正数),你可以用2补4,然后把两者相加6 + (-4)= 6 -4 = 2

这意味着正数和负数的减法和加法都可以由cpu中的同一个电路完成。

其他回答

用补法执行减法的优点是减少了硬件 的复杂性。不需要不同的数字电路来进行加减法运算 加法和减法只能由加法器执行。

这样加法就不需要任何特殊的逻辑来处理负数了。在维基百科上查看这篇文章。

假设有两个数,2和-1。在表示数字的“直观”方式中,它们将分别为0010和1001(我坚持使用4位的大小)。两者互为补足,分别是0010和1111。现在,假设我想把它们相加。

2的补语加法非常简单。你通常加数字,任何进位在最后被丢弃。所以它们相加如下:

  0010
+ 1111
=10001
= 0001 (discard the carry)

0001是1,这是“2+(-1)”的预期结果。

但在你的“直观”方法中,添加更复杂:

  0010
+ 1001
= 1011

等于-3,对吧?简单的加法在这种情况下行不通。你需要注意,其中一个数字是负的,如果是这种情况,就使用不同的算法。

对于这种“直观的”存储方法,减法是一种不同于加法的操作,在加法之前需要对数字进行额外的检查。由于您希望最基本的操作(加法、减法等)尽可能快,因此需要以允许您使用尽可能简单的算法的方式存储数字。

此外,在“直观”存储方法中,有两个0:

0000  "zero"
1000  "negative zero"

它们直观上是相同的数字,但存储时有两个不同的值。每个应用程序都需要采取额外的步骤来确保非零值也不是负零。

以这种方式存储int型还有另一个好处,那就是当你需要扩展存储值的寄存器的宽度时。对于2的补数,在8位寄存器中存储一个4位数就是重复它的最高位:

    0001 (one, in four bits)
00000001 (one, in eight bits)
    1110 (negative two, in four bits)
11111110 (negative two, in eight bits)

这只是观察小单词的符号位,然后重复它,直到它赶上大单词的宽度。

使用你的方法,你需要清除现有的位,这是一个额外的操作,除了填充:

    0001 (one, in four bits)
00000001 (one, in eight bits)
    1010 (negative two, in four bits)
10000010 (negative two, in eight bits)

在这两种情况下,您仍然需要设置额外的4位,但在“直观”情况下,您还需要清除第5位。这是每个应用程序中最基本和最常见操作之一中的一个小小的额外步骤。

为什么用Two2的补语系统来表示负数,而不是用One的补语系统,一个令人满意的答案是 二的补语系统解决了一的补语系统中存在的表示负数的0的多重表示和对进位的需要。

欲了解更多信息,请访问https://en.wikipedia.org/wiki/Signed_number_representations

用于末端绕行访问 https://en.wikipedia.org/wiki/End-around_carry

有不同类型的表示,它们是:

无符号数表示 有符号数字表示 补体表示 二补体表示法

无符号数字表示,仅用于表示正数

有符号的数字表示,用来表示正数和负数。在有符号数表示中,MSB位表示符号位,其余位表示数字。当MSB为0时表示数字为正,当MSB为1时表示数字为负。

有符号数表示的问题是0有两个值。

补码表示法的问题是0有两个值。

但如果我们使用2的补体表示,那么0就只有一个值,这就是为什么我们用2的补体形式表示负数。

来源:负数为什么以二进制补码形式存储

扩展一下其他的答案:

在two's complement中

加法与普通正整数加法的原理相同。 减法也不会变 乘法!

"组织"需要不同的机制。

所有这些都是正确的,因为2的补是普通的模算术,我们选择通过减去模来看待一些负数。