如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
当前回答
很好bc:
$ num=1337; printf "scale=5;${num}\x2F3;\n" | bc
445.66666
其他回答
这是一个执行所需操作的简单函数。但是它需要+操作符,所以你所要做的就是用位操作符来加值:
// replaces the + operator
int add(int x, int y)
{
while (x) {
int t = (x & y) << 1;
y ^= x;
x = t;
}
return y;
}
int divideby3(int num)
{
int sum = 0;
while (num > 3) {
sum = add(num >> 2, sum);
num = add(num >> 2, num & 3);
}
if (num == 3)
sum = add(sum, 1);
return sum;
}
正如吉姆评论的那样,这是可行的,因为:
N = 4 * a + b N / 3 = a + (a + b) / 3 sum += an = a + b,然后迭代 当a == 0 (n < 4)时,sum += floor(n / 3);即1,如果n == 3,否则为0
很好bc:
$ num=1337; printf "scale=5;${num}\x2F3;\n" | bc
445.66666
3以2为底等于11。
所以只要做长除法(就像中学那样),以2 × 11为底。以2为底比以10为底更简单。
对于从最有效位开始的每个位位:
判断prefix是否小于11。
如果它是输出0。
如果不是输出1,则替换前缀位进行适当的更改。只有三种情况:
11xxx -> xxx (ie 3 - 3 = 0)
100xxx -> 1xxx (ie 4 - 3 = 1)
101xxx -> 10xxx (ie 5 - 3 = 2)
所有其他前缀都不可达。
重复到最低位,你就完成了。
如果你提醒自己标准的学校除法方法,用二进制来做,你会发现在3的情况下,你只是在有限的一组值中除法和减法(在这种情况下,从0到5)。这些可以用switch语句处理,以摆脱算术运算符。
static unsigned lamediv3(unsigned n)
{
unsigned result = 0, remainder = 0, mask = 0x80000000;
// Go through all bits of n from MSB to LSB.
for (int i = 0; i < 32; i++, mask >>= 1)
{
result <<= 1;
// Shift in the next bit of n into remainder.
remainder = remainder << 1 | !!(n & mask);
// Divide remainder by 3, update result and remainer.
// If remainder is less than 3, it remains intact.
switch (remainder)
{
case 3:
result |= 1;
remainder = 0;
break;
case 4:
result |= 1;
remainder = 1;
break;
case 5:
result |= 1;
remainder = 2;
break;
}
}
return result;
}
#include <cstdio>
int main()
{
// Verify for all possible values of a 32-bit unsigned integer.
unsigned i = 0;
do
{
unsigned d = lamediv3(i);
if (i / 3 != d)
{
printf("failed for %u: %u != %u\n", i, d, i / 3);
return 1;
}
}
while (++i != 0);
}
这是Python中的,基本上,字符串比较和一个状态机。
def divide_by_3(input):
to_do = {}
enque_index = 0
zero_to_9 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
leave_over = 0
for left_over in (0, 1, 2):
for digit in zero_to_9:
# left_over, digit => enque, leave_over
to_do[(left_over, digit)] = (zero_to_9[enque_index], leave_over)
if leave_over == 0:
leave_over = 1
elif leave_over == 1:
leave_over = 2
elif leave_over == 2 and enque_index != 9:
leave_over = 0
enque_index = (1, 2, 3, 4, 5, 6, 7, 8, 9)[enque_index]
answer_q = []
left_over = 0
digits = list(str(input))
if digits[0] == "-":
answer_q.append("-")
digits = digits[1:]
for digit in digits:
enque, left_over = to_do[(left_over, int(digit))]
if enque or len(answer_q):
answer_q.append(enque)
answer = 0
if len(answer_q):
answer = int("".join([str(a) for a in answer_q]))
return answer