如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

要将一个数除以3,而不使用乘法、除法、余数、减法或加法操作,在汇编编程语言中,惟一可用的指令是LEA(地址有效负载)、SHL(向左移动)和SHR(向右移动)。

在这个解决方案中,我没有使用与运算符+ - * /%相关的操作

我假设有输出数字在定点格式(16位整数部分和16位小数部分)和输入数字的类型是短int;但是,我已经近似输出的数量,因为我只能信任整数部分,因此我返回一个短int类型的值。

65536/6是固定点值,相当于1/3浮点数,等于21845。

21845 = 16384 + 4096 + 1024 + 256 + 64 + 16 + 4 + 1.

因此,要用1/3(21845)来做乘法,我使用指令LEA和SHL。

short int DivideBy3( short int num )
//In : eax= 16 Bit short int input number (N)
//Out: eax= N/3 (32 Bit fixed point output number
//          (Bit31-Bit16: integer part, Bit15-Bit0: digits after comma)
{
   __asm
   {
      movsx eax, num          // Get first argument

      // 65536 / 3 = 21845 = 16384 + 4096 + 1024 + 256 + 64 + 16 + 4 + 1

      lea edx,[4*eax+eax]     // EDX= EAX * 5
      shl eax,4
      lea edx,[eax+edx]       // EDX= EDX + EAX * 16
      shl eax,2
      lea edx,[eax+edx]       // EDX= EDX + EAX * 64
      shl eax,2
      lea edx,[eax+edx]       // EDX= EDX + EAX * 256
      shl eax,2
      lea edx,[eax+edx]       // EDX= EDX + EAX * 1024
      shl eax,2
      lea edx,[eax+edx]       // EDX= EDX + EAX * 4096
      shl eax,2
      lea edx,[eax+edx+08000h] // EDX= EDX + EAX * 16384

      shr edx,010h
      movsx eax,dx

   }
   // Return with result in EAX
}

它也适用于负数;结果具有正数的最小近似值(逗号后的最后一位数字为-1)。

如果您不打算使用运算符+ - * /%来执行除3的操作,但可以使用与它们相关的操作,我建议另一种解决方案。

int DivideBy3Bis( short int num )
//In : eax= 16 Bit short int input number (N)
//Out: eax= N/3 (32 Bit fixed point output number
//          (Bit31-Bit16: integer part, Bit15-Bit0: digits after comma)
{
   __asm
   {
      movsx   eax, num        // Get first argument

      mov     edx,21845
      imul    edx
   }
   // Return with result in EAX
}

其他回答

log(pow(exp(number),0.33333333333333333333)) /* :-) */

没有反复检查这个答案是否已经发表。如果程序需要扩展到浮点数,可以将这些数字乘以所需精度的10*数,然后可以再次应用下面的代码。

#include <stdio.h>

int main()
{
    int aNumber = 500;
    int gResult = 0;

    int aLoop = 0;

    int i = 0;
    for(i = 0; i < aNumber; i++)
    {
        if(aLoop == 3)
        {
           gResult++;
           aLoop = 0;
        }  
        aLoop++;
    }

    printf("Reulst of %d / 3 = %d", aNumber, gResult);

    return 0;
}

第一:

x/3 = (x/4) / (1-1/4)

然后求x/(1 - y)

x/(1-1/y)
  = x * (1+y) / (1-y^2)
  = x * (1+y) * (1+y^2) / (1-y^4)
  = ...
  = x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i)) / (1-y^(2^(i+i))
  = x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i))

y = 1/4:

int div3(int x) {
    x <<= 6;    // need more precise
    x += x>>2;  // x = x * (1+(1/2)^2)
    x += x>>4;  // x = x * (1+(1/2)^4)
    x += x>>8;  // x = x * (1+(1/2)^8)
    x += x>>16; // x = x * (1+(1/2)^16)
    return (x+1)>>8; // as (1-(1/2)^32) very near 1,
                     // we plus 1 instead of div (1-(1/2)^32)
}

虽然它使用了+,但有人已经实现了按位操作的add。

这是我小时候爷爷教我的一个方法。它需要+和/运算符,但计算起来很简单。

把每个数字相加,然后看看它是否是3的倍数。

但这种方法适用于大于12的数字。

例如:36岁,

3+6=9,是3的倍数。

42,

4+2=6,是3的倍数。

一般来说,解决这个问题的方法是:

log(pow(exp(numerator),pow(deliminator,-1)))