如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
当前回答
这是经典的2进制除法算法
#include <stdio.h>
#include <stdint.h>
int main()
{
uint32_t mod3[6] = { 0,1,2,0,1,2 };
uint32_t x = 1234567; // number to divide, and remainder at the end
uint32_t y = 0; // result
int bit = 31; // current bit
printf("X=%u X/3=%u\n",x,x/3); // the '/3' is for testing
while (bit>0)
{
printf("BIT=%d X=%u Y=%u\n",bit,x,y);
// decrement bit
int h = 1; while (1) { bit ^= h; if ( bit&h ) h <<= 1; else break; }
uint32_t r = x>>bit; // current remainder in 0..5
x ^= r<<bit; // remove R bits from X
if (r >= 3) y |= 1<<bit; // new output bit
x |= mod3[r]<<bit; // new remainder inserted in X
}
printf("Y=%u\n",y);
}
其他回答
似乎没有人提到用二进制表示的3的除法准则——偶数的和应该等于奇数的和(类似于十进制中11的准则)。在“检查一个数是否能被3整除”一栏中有使用这个技巧的解决方案。
我想这就是迈克尔·伯尔的编辑提到的可能的复制品。
使用黑客的喜悦魔术数字计算器
int divideByThree(int num)
{
return (fma(num, 1431655766, 0) >> 32);
}
其中fma是在math.h头文件中定义的标准库函数。
这是Python中的,基本上,字符串比较和一个状态机。
def divide_by_3(input):
to_do = {}
enque_index = 0
zero_to_9 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
leave_over = 0
for left_over in (0, 1, 2):
for digit in zero_to_9:
# left_over, digit => enque, leave_over
to_do[(left_over, digit)] = (zero_to_9[enque_index], leave_over)
if leave_over == 0:
leave_over = 1
elif leave_over == 1:
leave_over = 2
elif leave_over == 2 and enque_index != 9:
leave_over = 0
enque_index = (1, 2, 3, 4, 5, 6, 7, 8, 9)[enque_index]
answer_q = []
left_over = 0
digits = list(str(input))
if digits[0] == "-":
answer_q.append("-")
digits = digits[1:]
for digit in digits:
enque, left_over = to_do[(left_over, int(digit))]
if enque or len(answer_q):
answer_q.append(enque)
answer = 0
if len(answer_q):
answer = int("".join([str(a) for a in answer_q]))
return answer
这在Setun电脑上很容易实现。
要把一个整数除3,右移1位。
不过,我不确定在这样的平台上是否有可能实现一个符合标准的C编译器。我们可能需要稍微扩展一下规则,比如将“至少8位”解释为“能够保存至少从-128到+127的整数”。
第一:
x/3 = (x/4) / (1-1/4)
然后求x/(1 - y)
x/(1-1/y)
= x * (1+y) / (1-y^2)
= x * (1+y) * (1+y^2) / (1-y^4)
= ...
= x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i)) / (1-y^(2^(i+i))
= x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i))
y = 1/4:
int div3(int x) {
x <<= 6; // need more precise
x += x>>2; // x = x * (1+(1/2)^2)
x += x>>4; // x = x * (1+(1/2)^4)
x += x>>8; // x = x * (1+(1/2)^8)
x += x>>16; // x = x * (1+(1/2)^16)
return (x+1)>>8; // as (1-(1/2)^32) very near 1,
// we plus 1 instead of div (1-(1/2)^32)
}
虽然它使用了+,但有人已经实现了按位操作的add。