如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
当前回答
使用黑客的喜悦魔术数字计算器
int divideByThree(int num)
{
return (fma(num, 1431655766, 0) >> 32);
}
其中fma是在math.h头文件中定义的标准库函数。
其他回答
以下是我的解决方案:
public static int div_by_3(long a) {
a <<= 30;
for(int i = 2; i <= 32 ; i <<= 1) {
a = add(a, a >> i);
}
return (int) (a >> 32);
}
public static long add(long a, long b) {
long carry = (a & b) << 1;
long sum = (a ^ b);
return carry == 0 ? sum : add(carry, sum);
}
首先,请注意
1/3 = 1/4 + 1/16 + 1/64 + ...
现在,剩下的很简单!
a/3 = a * 1/3
a/3 = a * (1/4 + 1/16 + 1/64 + ...)
a/3 = a/4 + a/16 + 1/64 + ...
a/3 = a >> 2 + a >> 4 + a >> 6 + ...
现在我们要做的就是把a的这些位移位值加在一起!哦!但是我们不能做加法,所以我们必须使用位操作符来编写一个加法函数!如果您熟悉逐位操作符,那么我的解决方案应该看起来相当简单……但以防你不懂,我会在最后讲一个例子。
另一件需要注意的事情是,首先我左移30!这是为了确保分数不会四舍五入。
11 + 6
1011 + 0110
sum = 1011 ^ 0110 = 1101
carry = (1011 & 0110) << 1 = 0010 << 1 = 0100
Now you recurse!
1101 + 0100
sum = 1101 ^ 0100 = 1001
carry = (1101 & 0100) << 1 = 0100 << 1 = 1000
Again!
1001 + 1000
sum = 1001 ^ 1000 = 0001
carry = (1001 & 1000) << 1 = 1000 << 1 = 10000
One last time!
0001 + 10000
sum = 0001 ^ 10000 = 10001 = 17
carry = (0001 & 10000) << 1 = 0
Done!
这就是你小时候学过的简单加法!
111
1011
+0110
-----
10001
这个实现失败了,因为我们不能把方程的所有项相加:
a / 3 = a/4 + a/4^2 + a/4^3 + ... + a/4^i + ... = f(a, i) + a * 1/3 * 1/4^i
f(a, i) = a/4 + a/4^2 + ... + a/4^i
假设div_by_3(a) = x的结果,则x <= floor(f(a, i)) < a / 3。当a = 3k时,我们得到错误的答案。
为什么我们不直接用在大学里学过的定义呢?结果可能效率低,但很清楚,因为乘法只是递归的减法,减法是加法,那么加法可以通过递归的异或/和逻辑端口组合来执行。
#include <stdio.h>
int add(int a, int b){
int rc;
int carry;
rc = a ^ b;
carry = (a & b) << 1;
if (rc & carry)
return add(rc, carry);
else
return rc ^ carry;
}
int sub(int a, int b){
return add(a, add(~b, 1));
}
int div( int D, int Q )
{
/* lets do only positive and then
* add the sign at the end
* inversion needs to be performed only for +Q/-D or -Q/+D
*/
int result=0;
int sign=0;
if( D < 0 ) {
D=sub(0,D);
if( Q<0 )
Q=sub(0,Q);
else
sign=1;
} else {
if( Q<0 ) {
Q=sub(0,Q);
sign=1;
}
}
while(D>=Q) {
D = sub( D, Q );
result++;
}
/*
* Apply sign
*/
if( sign )
result = sub(0,result);
return result;
}
int main( int argc, char ** argv )
{
printf( "2 plus 3=%d\n", add(2,3) );
printf( "22 div 3=%d\n", div(22,3) );
printf( "-22 div 3=%d\n", div(-22,3) );
printf( "-22 div -3=%d\n", div(-22,-3) );
printf( "22 div 03=%d\n", div(22,-3) );
return 0;
}
有人说……首先让它工作。注意,该算法应该适用于负Q…
这应该适用于任何除数,而不仅仅是3。目前仅适用于unsigned,但将其扩展到signed应该没有那么困难。
#include <stdio.h>
unsigned sub(unsigned two, unsigned one);
unsigned bitdiv(unsigned top, unsigned bot);
unsigned sub(unsigned two, unsigned one)
{
unsigned bor;
bor = one;
do {
one = ~two & bor;
two ^= bor;
bor = one<<1;
} while (one);
return two;
}
unsigned bitdiv(unsigned top, unsigned bot)
{
unsigned result, shift;
if (!bot || top < bot) return 0;
for(shift=1;top >= (bot<<=1); shift++) {;}
bot >>= 1;
for (result=0; shift--; bot >>= 1 ) {
result <<=1;
if (top >= bot) {
top = sub(top,bot);
result |= 1;
}
}
return result;
}
int main(void)
{
unsigned arg,val;
for (arg=2; arg < 40; arg++) {
val = bitdiv(arg,3);
printf("Arg=%u Val=%u\n", arg, val);
}
return 0;
}
我认为正确的答案是:
为什么不用基本运算符来做基本运算呢?
愚蠢的情况需要愚蠢的解决方案:
#include <stdio.h>
#include <stdlib.h>
int main()
{
FILE * fp=fopen("temp.dat","w+b");
int number=12346;
int divisor=3;
char * buf = calloc(number,1);
fwrite(buf,number,1,fp);
rewind(fp);
int result=fread(buf,divisor,number,fp);
printf("%d / %d = %d", number, divisor, result);
free(buf);
fclose(fp);
return 0;
}
如果还需要小数部分,只需将result声明为double,并将fmod(number,除数)的结果添加到它。
解释它是如何工作的
fwrite写入number字节(在上面的例子中number为123456)。 “倒带”将文件指针重置到文件的前面。 Fread从文件中读取长度为除数的最多数量的“记录”,并返回它所读取的元素的数量。
如果你写30个字节,然后以3为单位读回文件,你会得到10个“单位”。30 / 3 = 10