如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

首先是我想到的。

irb(main):101:0> div3 = -> n { s = '%0' + n.to_s + 's'; (s % '').gsub('   ', ' ').size }
=> #<Proc:0x0000000205ae90@(irb):101 (lambda)>
irb(main):102:0> div3[12]
=> 4
irb(main):103:0> div3[666]
=> 222

编辑:对不起,我没有注意到标签c。但是你可以使用字符串格式的想法,我猜…

其他回答

首先是我想到的。

irb(main):101:0> div3 = -> n { s = '%0' + n.to_s + 's'; (s % '').gsub('   ', ' ').size }
=> #<Proc:0x0000000205ae90@(irb):101 (lambda)>
irb(main):102:0> div3[12]
=> 4
irb(main):103:0> div3[666]
=> 222

编辑:对不起,我没有注意到标签c。但是你可以使用字符串格式的想法,我猜…

使用fma()库函数的解决方案,适用于任何正数:

#include <stdio.h>
#include <math.h>

int main()
{
    int number = 8;//Any +ve no.
    int temp = 3, result = 0;
    while(temp <= number){
        temp = fma(temp, 1, 3); //fma(a, b, c) is a library function and returns (a*b) + c.
        result = fma(result, 1, 1);
    } 
    printf("\n\n%d divided by 3 = %d\n", number, result);
}

请看我的另一个答案。

我会用这段代码除所有正数,非浮点数。基本上你要把除数位向左对齐以匹配被除数位。对于被除数的每一段(除数的大小),你想要检查是否被除数的每一段大于除数,然后你想要左Shift,然后在第一个注册器中OR。这个概念最初是在2004年创建的(我相信是斯坦福大学),这里是一个C版本,它使用了这个概念。注:(我做了一点修改)

int divide(int a, int b)
{
    int c = 0, r = 32, i = 32, p = a + 1;
    unsigned long int d = 0x80000000;

    while ((b & d) == 0)
    {
        d >>= 1;
        r--;
    }

    while (p > a)
    {
        c <<= 1;
        p = (b >> i--) & ((1 << r) - 1);
        if (p >= a)
            c |= 1;
    }
    return c; //p is remainder (for modulus)
}

使用示例:

int n = divide( 3, 6); //outputs 2
int div3(int x)
{
  int reminder = abs(x);
  int result = 0;
  while(reminder >= 3)
  {
     result++;

     reminder--;
     reminder--;
     reminder--;
  }
  return result;
}

Yet another solution. This should handle all ints (including negative ints) except the min value of an int, which would need to be handled as a hard coded exception. This basically does division by subtraction but only using bit operators (shifts, xor, & and complement). For faster speed, it subtracts 3 * (decreasing powers of 2). In c#, it executes around 444 of these DivideBy3 calls per millisecond (2.2 seconds for 1,000,000 divides), so not horrendously slow, but no where near as fast as a simple x/3. By comparison, Coodey's nice solution is about 5 times faster than this one.

public static int DivideBy3(int a) {
    bool negative = a < 0;
    if (negative) a = Negate(a);
    int result;
    int sub = 3 << 29;
    int threes = 1 << 29;
    result = 0;
    while (threes > 0) {
        if (a >= sub) {
            a = Add(a, Negate(sub));
            result = Add(result, threes);
        }
        sub >>= 1;
        threes >>= 1;
    }
    if (negative) result = Negate(result);
    return result;
}
public static int Negate(int a) {
    return Add(~a, 1);
}
public static int Add(int a, int b) {
    int x = 0;
    x = a ^ b;
    while ((a & b) != 0) {
        b = (a & b) << 1;
        a = x;
        x = a ^ b;
    }
    return x;
}

这是c#,因为这是我手边的东西,但与c的区别应该很小。