如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
当前回答
首先是我想到的。
irb(main):101:0> div3 = -> n { s = '%0' + n.to_s + 's'; (s % '').gsub(' ', ' ').size }
=> #<Proc:0x0000000205ae90@(irb):101 (lambda)>
irb(main):102:0> div3[12]
=> 4
irb(main):103:0> div3[666]
=> 222
编辑:对不起,我没有注意到标签c。但是你可以使用字符串格式的想法,我猜…
其他回答
首先是我想到的。
irb(main):101:0> div3 = -> n { s = '%0' + n.to_s + 's'; (s % '').gsub(' ', ' ').size }
=> #<Proc:0x0000000205ae90@(irb):101 (lambda)>
irb(main):102:0> div3[12]
=> 4
irb(main):103:0> div3[666]
=> 222
编辑:对不起,我没有注意到标签c。但是你可以使用字符串格式的想法,我猜…
使用fma()库函数的解决方案,适用于任何正数:
#include <stdio.h>
#include <math.h>
int main()
{
int number = 8;//Any +ve no.
int temp = 3, result = 0;
while(temp <= number){
temp = fma(temp, 1, 3); //fma(a, b, c) is a library function and returns (a*b) + c.
result = fma(result, 1, 1);
}
printf("\n\n%d divided by 3 = %d\n", number, result);
}
请看我的另一个答案。
我会用这段代码除所有正数,非浮点数。基本上你要把除数位向左对齐以匹配被除数位。对于被除数的每一段(除数的大小),你想要检查是否被除数的每一段大于除数,然后你想要左Shift,然后在第一个注册器中OR。这个概念最初是在2004年创建的(我相信是斯坦福大学),这里是一个C版本,它使用了这个概念。注:(我做了一点修改)
int divide(int a, int b)
{
int c = 0, r = 32, i = 32, p = a + 1;
unsigned long int d = 0x80000000;
while ((b & d) == 0)
{
d >>= 1;
r--;
}
while (p > a)
{
c <<= 1;
p = (b >> i--) & ((1 << r) - 1);
if (p >= a)
c |= 1;
}
return c; //p is remainder (for modulus)
}
使用示例:
int n = divide( 3, 6); //outputs 2
int div3(int x)
{
int reminder = abs(x);
int result = 0;
while(reminder >= 3)
{
result++;
reminder--;
reminder--;
reminder--;
}
return result;
}
Yet another solution. This should handle all ints (including negative ints) except the min value of an int, which would need to be handled as a hard coded exception. This basically does division by subtraction but only using bit operators (shifts, xor, & and complement). For faster speed, it subtracts 3 * (decreasing powers of 2). In c#, it executes around 444 of these DivideBy3 calls per millisecond (2.2 seconds for 1,000,000 divides), so not horrendously slow, but no where near as fast as a simple x/3. By comparison, Coodey's nice solution is about 5 times faster than this one.
public static int DivideBy3(int a) {
bool negative = a < 0;
if (negative) a = Negate(a);
int result;
int sub = 3 << 29;
int threes = 1 << 29;
result = 0;
while (threes > 0) {
if (a >= sub) {
a = Add(a, Negate(sub));
result = Add(result, threes);
}
sub >>= 1;
threes >>= 1;
}
if (negative) result = Negate(result);
return result;
}
public static int Negate(int a) {
return Add(~a, 1);
}
public static int Add(int a, int b) {
int x = 0;
x = a ^ b;
while ((a & b) != 0) {
b = (a & b) << 1;
a = x;
x = a ^ b;
}
return x;
}
这是c#,因为这是我手边的东西,但与c的区别应该很小。