如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

我会用这段代码除所有正数,非浮点数。基本上你要把除数位向左对齐以匹配被除数位。对于被除数的每一段(除数的大小),你想要检查是否被除数的每一段大于除数,然后你想要左Shift,然后在第一个注册器中OR。这个概念最初是在2004年创建的(我相信是斯坦福大学),这里是一个C版本,它使用了这个概念。注:(我做了一点修改)

int divide(int a, int b)
{
    int c = 0, r = 32, i = 32, p = a + 1;
    unsigned long int d = 0x80000000;

    while ((b & d) == 0)
    {
        d >>= 1;
        r--;
    }

    while (p > a)
    {
        c <<= 1;
        p = (b >> i--) & ((1 << r) - 1);
        if (p >= a)
            c |= 1;
    }
    return c; //p is remainder (for modulus)
}

使用示例:

int n = divide( 3, 6); //outputs 2

其他回答

使用fma()库函数的解决方案,适用于任何正数:

#include <stdio.h>
#include <math.h>

int main()
{
    int number = 8;//Any +ve no.
    int temp = 3, result = 0;
    while(temp <= number){
        temp = fma(temp, 1, 3); //fma(a, b, c) is a library function and returns (a*b) + c.
        result = fma(result, 1, 1);
    } 
    printf("\n\n%d divided by 3 = %d\n", number, result);
}

请看我的另一个答案。

这是我小时候爷爷教我的一个方法。它需要+和/运算符,但计算起来很简单。

把每个数字相加,然后看看它是否是3的倍数。

但这种方法适用于大于12的数字。

例如:36岁,

3+6=9,是3的倍数。

42,

4+2=6,是3的倍数。

使用itoa转换为以3为基数的字符串。去掉最后一个小调,转换回10进制。

// Note: itoa is non-standard but actual implementations
// don't seem to handle negative when base != 10.
int div3(int i) {
    char str[42];
    sprintf(str, "%d", INT_MIN); // Put minus sign at str[0]
    if (i>0)                     // Remove sign if positive
        str[0] = ' ';
    itoa(abs(i), &str[1], 3);    // Put ternary absolute value starting at str[1]
    str[strlen(&str[1])] = '\0'; // Drop last digit
    return strtol(str, NULL, 3); // Read back result
}

第一:

x/3 = (x/4) / (1-1/4)

然后求x/(1 - y)

x/(1-1/y)
  = x * (1+y) / (1-y^2)
  = x * (1+y) * (1+y^2) / (1-y^4)
  = ...
  = x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i)) / (1-y^(2^(i+i))
  = x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i))

y = 1/4:

int div3(int x) {
    x <<= 6;    // need more precise
    x += x>>2;  // x = x * (1+(1/2)^2)
    x += x>>4;  // x = x * (1+(1/2)^4)
    x += x>>8;  // x = x * (1+(1/2)^8)
    x += x>>16; // x = x * (1+(1/2)^16)
    return (x+1)>>8; // as (1-(1/2)^32) very near 1,
                     // we plus 1 instead of div (1-(1/2)^32)
}

虽然它使用了+,但有人已经实现了按位操作的add。

你可以使用(依赖于平台)内联程序集,例如,对于x86:(也适用于负数)

#include <stdio.h>

int main() {
  int dividend = -42, divisor = 5, quotient, remainder;

  __asm__ ( "cdq; idivl %%ebx;"
          : "=a" (quotient), "=d" (remainder)
          : "a"  (dividend), "b"  (divisor)
          : );

  printf("%i / %i = %i, remainder: %i\n", dividend, divisor, quotient, remainder);
  return 0;
}