如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

如果你提醒自己标准的学校除法方法,用二进制来做,你会发现在3的情况下,你只是在有限的一组值中除法和减法(在这种情况下,从0到5)。这些可以用switch语句处理,以摆脱算术运算符。

static unsigned lamediv3(unsigned n)
{
  unsigned result = 0, remainder = 0, mask = 0x80000000;

  // Go through all bits of n from MSB to LSB.
  for (int i = 0; i < 32; i++, mask >>= 1)
  {
    result <<= 1;
    // Shift in the next bit of n into remainder.
    remainder = remainder << 1 | !!(n & mask);

    // Divide remainder by 3, update result and remainer.
    // If remainder is less than 3, it remains intact.
    switch (remainder)
    {
    case 3:
      result |= 1;
      remainder = 0;
      break;

    case 4:
      result |= 1;
      remainder = 1;
      break;

    case 5:
      result |= 1;
      remainder = 2;
      break;
    }
  }

  return result;
}

#include <cstdio>

int main()
{
  // Verify for all possible values of a 32-bit unsigned integer.
  unsigned i = 0;

  do
  {
    unsigned d = lamediv3(i);

    if (i / 3 != d)
    {
      printf("failed for %u: %u != %u\n", i, d, i / 3);
      return 1;
    }
  }
  while (++i != 0);
}

其他回答

并不是所有的答案都是面试官想听到的:

我的回答:

“我绝不会那样做,谁会为这种愚蠢的事情付出代价呢?”没有人 会有一个优势,它不是更快,它只是愚蠢。 教授设计师必须知道这一点,但这必须适用于所有数字,而不仅仅是除以3。”

为什么我们不直接用在大学里学过的定义呢?结果可能效率低,但很清楚,因为乘法只是递归的减法,减法是加法,那么加法可以通过递归的异或/和逻辑端口组合来执行。

#include <stdio.h>

int add(int a, int b){
   int rc;
   int carry;
   rc = a ^ b; 
   carry = (a & b) << 1;
   if (rc & carry) 
      return add(rc, carry);
   else
      return rc ^ carry; 
}

int sub(int a, int b){
   return add(a, add(~b, 1)); 
}

int div( int D, int Q )
{
/* lets do only positive and then
 * add the sign at the end
 * inversion needs to be performed only for +Q/-D or -Q/+D
 */
   int result=0;
   int sign=0;
   if( D < 0 ) {
      D=sub(0,D);
      if( Q<0 )
         Q=sub(0,Q);
      else
         sign=1;
   } else {
      if( Q<0 ) {
         Q=sub(0,Q);
         sign=1;
      } 
   }
   while(D>=Q) {
      D = sub( D, Q );
      result++;
   }
/*
* Apply sign
*/
   if( sign )
      result = sub(0,result);
   return result;
}

int main( int argc, char ** argv ) 
{
    printf( "2 plus 3=%d\n", add(2,3) );
    printf( "22 div 3=%d\n", div(22,3) );
    printf( "-22 div 3=%d\n", div(-22,3) );
    printf( "-22 div -3=%d\n", div(-22,-3) );
    printf( "22 div 03=%d\n", div(22,-3) );
    return 0;
}

有人说……首先让它工作。注意,该算法应该适用于负Q…

下面的脚本生成了一个C程序,可以在不使用运算符* / + - %的情况下解决这个问题:

#!/usr/bin/env python3

print('''#include <stdint.h>
#include <stdio.h>
const int32_t div_by_3(const int32_t input)
{
''')

for i in range(-2**31, 2**31):
    print('    if(input == %d) return %d;' % (i, i / 3))


print(r'''
    return 42; // impossible
}
int main()
{
    const int32_t number = 8;
    printf("%d / 3 = %d\n", number, div_by_3(number));
}
''')

Yet another solution. This should handle all ints (including negative ints) except the min value of an int, which would need to be handled as a hard coded exception. This basically does division by subtraction but only using bit operators (shifts, xor, & and complement). For faster speed, it subtracts 3 * (decreasing powers of 2). In c#, it executes around 444 of these DivideBy3 calls per millisecond (2.2 seconds for 1,000,000 divides), so not horrendously slow, but no where near as fast as a simple x/3. By comparison, Coodey's nice solution is about 5 times faster than this one.

public static int DivideBy3(int a) {
    bool negative = a < 0;
    if (negative) a = Negate(a);
    int result;
    int sub = 3 << 29;
    int threes = 1 << 29;
    result = 0;
    while (threes > 0) {
        if (a >= sub) {
            a = Add(a, Negate(sub));
            result = Add(result, threes);
        }
        sub >>= 1;
        threes >>= 1;
    }
    if (negative) result = Negate(result);
    return result;
}
public static int Negate(int a) {
    return Add(~a, 1);
}
public static int Add(int a, int b) {
    int x = 0;
    x = a ^ b;
    while ((a & b) != 0) {
        b = (a & b) << 1;
        a = x;
        x = a ^ b;
    }
    return x;
}

这是c#,因为这是我手边的东西,但与c的区别应该很小。

好吧,我想我们都同意这不是一个现实世界的问题。为了好玩,这里是如何用Ada和多线程来做这件事:

with Ada.Text_IO;

procedure Divide_By_3 is

   protected type Divisor_Type is
      entry Poke;
      entry Finish;
   private
      entry Release;
      entry Stop_Emptying;
      Emptying : Boolean := False;
   end Divisor_Type;

   protected type Collector_Type is
      entry Poke;
      entry Finish;
   private
      Emptying : Boolean := False;
   end Collector_Type;

   task type Input is
   end Input;
   task type Output is
   end Output;

   protected body Divisor_Type is
      entry Poke when not Emptying and Stop_Emptying'Count = 0 is
      begin
         requeue Release;
      end Poke;
      entry Release when Release'Count >= 3 or Emptying is
         New_Output : access Output;
      begin
         if not Emptying then
            New_Output := new Output;
            Emptying := True;
            requeue Stop_Emptying;
         end if;
      end Release;
      entry Stop_Emptying when Release'Count = 0 is
      begin
         Emptying := False;
      end Stop_Emptying;
      entry Finish when Poke'Count = 0 and Release'Count < 3 is
      begin
         Emptying := True;
         requeue Stop_Emptying;
      end Finish;
   end Divisor_Type;

   protected body Collector_Type is
      entry Poke when Emptying is
      begin
         null;
      end Poke;
      entry Finish when True is
      begin
         Ada.Text_IO.Put_Line (Poke'Count'Img);
         Emptying := True;
      end Finish;
   end Collector_Type;

   Collector : Collector_Type;
   Divisor : Divisor_Type;

   task body Input is
   begin
      Divisor.Poke;
   end Input;

   task body Output is
   begin
      Collector.Poke;
   end Output;

   Cur_Input : access Input;

   -- Input value:
   Number : Integer := 18;
begin
   for I in 1 .. Number loop
      Cur_Input := new Input;
   end loop;
   Divisor.Finish;
   Collector.Finish;
end Divide_By_3;