我安装了Anaconda(使用Python 2.7),并在一个名为Tensorflow的环境中安装了Tensorflow。我可以在这个环境中成功导入Tensorflow。

问题是Jupyter Notebook无法识别我刚刚创建的新环境。无论我是从GUI Navigator还是tensorflow env中的命令行启动Jupyter Notebook,菜单中只有一个名为Python [Root]的内核,并且不能导入tensorflow。当然,我多次点击这个选项,保存文件,重新打开,但这些都没有帮助。

奇怪的是,当我打开Jupyter首页上的Conda标签时,我可以看到这两个环境。但是当我打开文件选项卡,并尝试新建一个笔记本时,我仍然只有一个内核。

我看了这个问题: 连接Conda环境与Jupyter Notebook 但是在我的电脑上没有~/Library/Jupyter/kernels这样的目录!这个Jupyter目录只有一个称为runtime的子目录。

我真的很困惑。Conda环境应该自动成为内核吗?(我在https://ipython.readthedocs.io/en/stable/install/kernel_install.html上手动设置了内核,但被告知没有找到ipykernel。)


当前回答

我们在这个问题上做了很多努力,以下是对我们有效的方法。如果你使用conda-forge通道,确保你使用的是从conda-forge更新的包是很重要的,即使是在你的Miniconda根环境中。

所以安装Miniconda,然后做:

conda config --add channels conda-forge --force
conda update --all  -y
conda install nb_conda_kernels -y
conda env create -f custom_env.yml -q --force
jupyter notebook

你的自定义环境将作为可用的内核显示在Jupyter中,只要你的custom_env中列出了ipykernel以供安装。Yml文件,就像这个例子:

name: bqplot
channels:
- conda-forge
- defaults
dependencies:
- python>=3.6
- bqplot
- ipykernel

为了证明它适用于许多自定义环境,这里有一个Windows屏幕截图:

其他回答

我们在这个问题上做了很多努力,以下是对我们有效的方法。如果你使用conda-forge通道,确保你使用的是从conda-forge更新的包是很重要的,即使是在你的Miniconda根环境中。

所以安装Miniconda,然后做:

conda config --add channels conda-forge --force
conda update --all  -y
conda install nb_conda_kernels -y
conda env create -f custom_env.yml -q --force
jupyter notebook

你的自定义环境将作为可用的内核显示在Jupyter中,只要你的custom_env中列出了ipykernel以供安装。Yml文件,就像这个例子:

name: bqplot
channels:
- conda-forge
- defaults
dependencies:
- python>=3.6
- bqplot
- ipykernel

为了证明它适用于许多自定义环境,这里有一个Windows屏幕截图:

我不认为其他答案是工作了,因为conda停止自动设置环境作为jupyter内核。您需要手动为每个环境添加内核,方法如下:

source activate myenv
python -m ipykernel install --user --name myenv --display-name "Python (myenv)"

如下所示:http://ipython.readthedocs.io/en/stable/install/kernel_install.html#kernels-for-different-environments 请参见本期。

附录: 您应该能够使用conda install nb_conda_kernels安装nb_conda_kernels包来自动添加所有环境,请参阅https://github.com/Anaconda-Platform/nb_conda_kernels

我也遇到了同样的问题,我的新conda环境myenv不能被选为内核或新笔记本。在env中运行jupter notebook也得到了相同的结果。

我的解决方案,以及我了解到Jupyter笔记本如何识别conda-envs和内核:

使用conda将jupyter和ipython安装到myenv:

conda install -n myenv ipython jupyter

在那之后,在任何env之外运行jupter notebook时,将myenv与我以前的环境一起列为内核。

Python [conda env:old]
Python [conda env:myenv]

启动环境后运行笔记本:

source activate myenv
jupyter notebook

隐藏所有其他环境内核,只显示我的语言内核:

python 2
python 3
R

只要在你的新环境中运行conda install ipykernel,只有这样你才能得到一个带有这个env的内核。即使你在每个envs中安装了不同的版本,它也不会再次安装jupyter笔记本。你可以从任何环境开始你的笔记本,你将能够看到新添加的内核。

添加conda环境到Jupyter:

在Anaconda提示中:

执行conda activate <env name> 执行conda install -c anaconda ipykernel命令 执行python -m ipykernel install——user——name=<env name> **在conda 4.8.3 4.11.0上测试