我安装了Anaconda(使用Python 2.7),并在一个名为Tensorflow的环境中安装了Tensorflow。我可以在这个环境中成功导入Tensorflow。

问题是Jupyter Notebook无法识别我刚刚创建的新环境。无论我是从GUI Navigator还是tensorflow env中的命令行启动Jupyter Notebook,菜单中只有一个名为Python [Root]的内核,并且不能导入tensorflow。当然,我多次点击这个选项,保存文件,重新打开,但这些都没有帮助。

奇怪的是,当我打开Jupyter首页上的Conda标签时,我可以看到这两个环境。但是当我打开文件选项卡,并尝试新建一个笔记本时,我仍然只有一个内核。

我看了这个问题: 连接Conda环境与Jupyter Notebook 但是在我的电脑上没有~/Library/Jupyter/kernels这样的目录!这个Jupyter目录只有一个称为runtime的子目录。

我真的很困惑。Conda环境应该自动成为内核吗?(我在https://ipython.readthedocs.io/en/stable/install/kernel_install.html上手动设置了内核,但被告知没有找到ipykernel。)


当前回答

这是一个旧线程,但是在Anaconda提示符中运行它,在我感兴趣的环境中,对我来说是有效的:

ipython kernel install --name "myenvname" --user

其他回答

这适用于我在windows 10和最新解决方案:

1)进入conda环境(激活your_env_name)

2) conda install -n your_env_name ipykernel

3) python -m ipykernel install——user——name build_central——display name" your_env_name"

(注意:在步骤3中,“your_env_name”周围包含引号)

我也遇到过类似的问题,我找到了一个适用于Mac、Windows和Linux的解决方案。它需要上面答案中的几个关键成分:

为了能够看到conda env在Jupyter笔记本,你需要:

the following package in you base env: conda install nb_conda the following package in each env you create: conda install ipykernel check the configurationn of jupyter_notebook_config.py first check if you have a jupyter_notebook_config.py in one of the location given by jupyter --paths if it doesn't exist, create it by running jupyter notebook --generate-config add or be sure you have the following: c.NotebookApp.kernel_spec_manager_class='nb_conda_kernels.manager.CondaKernelSpecManager'

您可以在终端看到的环境:

在Jupyter实验室,你可以看到相同的env上面的笔记本和控制台:

当你打开笔记本时,你可以选择你的环境:

安全的方法是创建一个特定的env,从中运行envjupyter lab命令的示例。激活你的环境。然后添加jupyter实验室扩展示例jupyter实验室扩展。然后你就可以运行木星实验室了

对于conda 4.5.12,适用于我的是(我的虚拟环境被称为nwt)

conda create --name nwt python=3

之后,我需要激活虚拟环境并安装ipykernel

activate nwt
pip install ipykernel

那么对我有效的方法是:

python -m ipykernel install --user --name env_name --display-name "name of your choosing."

例如,我使用'nwt'作为虚拟env的显示名称。在运行上面的命令之后。再次在Anaconda Prompt中运行“jupyter notebook”。我得到的是:

    $ conda install nb_conda_kernels

(在运行jupyter notebook的conda环境中)将使所有conda envs自动可用。要访问其他环境,必须安装相应的内核。这是裁判。

可能的特定渠道问题

我有这个问题(再次),原来我从conda-forge频道安装;将其移除并从蟒蛇通道重新安装,而不是为我修复它。

更新:我在一个新的env中再次遇到了同样的问题,这次我确实从anaconda通道安装了nb_conda_kernels,但我的jupyter_client来自conda forge通道。卸载nb_conda_kernels并重新安装会将其更新到更高优先级的通道。

所以请确保你从正确的渠道安装:)