我安装了Anaconda(使用Python 2.7),并在一个名为Tensorflow的环境中安装了Tensorflow。我可以在这个环境中成功导入Tensorflow。

问题是Jupyter Notebook无法识别我刚刚创建的新环境。无论我是从GUI Navigator还是tensorflow env中的命令行启动Jupyter Notebook,菜单中只有一个名为Python [Root]的内核,并且不能导入tensorflow。当然,我多次点击这个选项,保存文件,重新打开,但这些都没有帮助。

奇怪的是,当我打开Jupyter首页上的Conda标签时,我可以看到这两个环境。但是当我打开文件选项卡,并尝试新建一个笔记本时,我仍然只有一个内核。

我看了这个问题: 连接Conda环境与Jupyter Notebook 但是在我的电脑上没有~/Library/Jupyter/kernels这样的目录!这个Jupyter目录只有一个称为runtime的子目录。

我真的很困惑。Conda环境应该自动成为内核吗?(我在https://ipython.readthedocs.io/en/stable/install/kernel_install.html上手动设置了内核,但被告知没有找到ipykernel。)


当前回答

nb_conda_kernels包是在conda中使用jupyter的最佳方式。通过最小的依赖关系和配置,它允许您使用运行在不同环境中的jupyter笔记本上的其他conda环境。引用其文件:

Installation This package is designed to be managed solely using conda. It should be installed in the environment from which you run Jupyter Notebook or JupyterLab. This might be your base conda environment, but it need not be. For instance, if the environment notebook_env contains the notebook package, then you would run conda install -n notebook_env nb_conda_kernels Any other environments you wish to access in your notebooks must have an appropriate kernel package installed. For instance, to access a Python environment, it must have the ipykernel package; e.g. conda install -n python_env ipykernel To utilize an R environment, it must have the r-irkernel package; e.g. conda install -n r_env r-irkernel For other languages, their corresponding kernels must be installed.

然后你需要做的就是启动jupyter笔记本服务器:

conda activate notebook_env  # only needed if you are not using the base environment for the server
# conda install jupyter # in case you have not installed it already
jupyter


尽管有太多的答案,@merv也在努力改进,但仍然很难找到一个好的答案。我做了这个CW,所以请投票给它的顶部或改进它!

其他回答

恼人的是,在你的tensorflow环境中,你可以运行jupyter notebook,而无需在该环境中安装jupyter。你就跑

(tensorflow) $ conda install jupyter

tensorflow环境现在应该在Jupyter notebook中可见,在任何conda环境中启动,类似于Python [conda env:tensorflow]。

虽然@coolscitist的回答对我来说是有效的,但也有一种方法不会让你的内核环境与完整的jupyter包+deps混淆。 它在ipython文档中有描述,(我怀疑)只有在非基础环境中运行笔记本服务器时才有必要。

conda activate name_of_your_kernel_env
conda install ipykernel
python -m ipykernel install --prefix=/home/your_username/.conda/envs/name_of_your_jupyter_server_env --name 'name_of_your_kernel_env'

你可以用

conda activate name_of_your_jupyter_server_env 
jupyter kernelspec list

如果您的环境没有显示,请确保您已经安装

nb_conda_kernels在Jupyter环境中 你想要访问的Python环境中的ipykernel和ipywidgets(注意,ipywidgets是为了启用一些Juptyer功能,而不是环境可见性,请参阅相关文档)。

Anaconda的文档表明

nb_conda_kernels should be installed in the environment from which you run Jupyter Notebook or JupyterLab. This might be your base conda environment, but it need not be. For instance, if the environment notebook_env contains the notebook package, then you would run conda install -n notebook_env nb_conda_kernels Any other environments you wish to access in your notebooks must have an appropriate kernel package installed. For instance, to access a Python environment, it must have the ipykernel package; e.g. conda install -n python_env ipykernel To utilize an R environment, it must have the r-irkernel package; e.g. conda install -n r_env r-irkernel For other languages, their corresponding kernels must be installed.

除了Python,通过安装适当的*内核包,Jupyter可以访问大量其他语言的内核,包括R、Julia、Scala/Spark、JavaScript、bash、Octave,甚至MATLAB。


请注意,在最初发布这篇文章的时候,可能是nb_conda还不支持Python 3.6环境造成的。

如果其他解决方案无法让Jupyter识别其他conda环境,则始终可以在特定环境中安装和运行Jupyter。不过,你可能无法从木星内部看到或切换到其他环境。

$ conda create -n py36_test -y python=3.6 jupyter
$ source activate py36_test
(py36_test) $ which jupyter
/home/schowell/anaconda3/envs/py36_test/bin/jupyter
(py36_test) $ jupyter notebook

注意,我在这个笔记本中运行的是Python 3.6.1:

注意,如果在许多环境中都这样做,那么在每个环境中安装Jupyter所增加的存储空间可能是不可取的(取决于您的系统)。

我们在这个问题上做了很多努力,以下是对我们有效的方法。如果你使用conda-forge通道,确保你使用的是从conda-forge更新的包是很重要的,即使是在你的Miniconda根环境中。

所以安装Miniconda,然后做:

conda config --add channels conda-forge --force
conda update --all  -y
conda install nb_conda_kernels -y
conda env create -f custom_env.yml -q --force
jupyter notebook

你的自定义环境将作为可用的内核显示在Jupyter中,只要你的custom_env中列出了ipykernel以供安装。Yml文件,就像这个例子:

name: bqplot
channels:
- conda-forge
- defaults
dependencies:
- python>=3.6
- bqplot
- ipykernel

为了证明它适用于许多自定义环境,这里有一个Windows屏幕截图:

按照iPython文档中的说明,将不同的conda环境添加到Jupyter Notebook中可供选择的内核列表中。总之,安装完ipykernel后,必须在终端中逐个激活conda环境,执行命令python -m ipykernel install——user——name myenv——display-name " python (myenv)",其中myenv就是要添加的环境(内核)。