我安装了Anaconda(使用Python 2.7),并在一个名为Tensorflow的环境中安装了Tensorflow。我可以在这个环境中成功导入Tensorflow。

问题是Jupyter Notebook无法识别我刚刚创建的新环境。无论我是从GUI Navigator还是tensorflow env中的命令行启动Jupyter Notebook,菜单中只有一个名为Python [Root]的内核,并且不能导入tensorflow。当然,我多次点击这个选项,保存文件,重新打开,但这些都没有帮助。

奇怪的是,当我打开Jupyter首页上的Conda标签时,我可以看到这两个环境。但是当我打开文件选项卡,并尝试新建一个笔记本时,我仍然只有一个内核。

我看了这个问题: 连接Conda环境与Jupyter Notebook 但是在我的电脑上没有~/Library/Jupyter/kernels这样的目录!这个Jupyter目录只有一个称为runtime的子目录。

我真的很困惑。Conda环境应该自动成为内核吗?(我在https://ipython.readthedocs.io/en/stable/install/kernel_install.html上手动设置了内核,但被告知没有找到ipykernel。)


当前回答

对于conda 4.5.12,适用于我的是(我的虚拟环境被称为nwt)

conda create --name nwt python=3

之后,我需要激活虚拟环境并安装ipykernel

activate nwt
pip install ipykernel

那么对我有效的方法是:

python -m ipykernel install --user --name env_name --display-name "name of your choosing."

例如,我使用'nwt'作为虚拟env的显示名称。在运行上面的命令之后。再次在Anaconda Prompt中运行“jupyter notebook”。我得到的是:

其他回答

我不认为其他答案是工作了,因为conda停止自动设置环境作为jupyter内核。您需要手动为每个环境添加内核,方法如下:

source activate myenv
python -m ipykernel install --user --name myenv --display-name "Python (myenv)"

如下所示:http://ipython.readthedocs.io/en/stable/install/kernel_install.html#kernels-for-different-environments 请参见本期。

附录: 您应该能够使用conda install nb_conda_kernels安装nb_conda_kernels包来自动添加所有环境,请参阅https://github.com/Anaconda-Platform/nb_conda_kernels

虽然@coolscitist的回答对我来说是有效的,但也有一种方法不会让你的内核环境与完整的jupyter包+deps混淆。 它在ipython文档中有描述,(我怀疑)只有在非基础环境中运行笔记本服务器时才有必要。

conda activate name_of_your_kernel_env
conda install ipykernel
python -m ipykernel install --prefix=/home/your_username/.conda/envs/name_of_your_jupyter_server_env --name 'name_of_your_kernel_env'

你可以用

conda activate name_of_your_jupyter_server_env 
jupyter kernelspec list

可能的特定渠道问题

我有这个问题(再次),原来我从conda-forge频道安装;将其移除并从蟒蛇通道重新安装,而不是为我修复它。

更新:我在一个新的env中再次遇到了同样的问题,这次我确实从anaconda通道安装了nb_conda_kernels,但我的jupyter_client来自conda forge通道。卸载nb_conda_kernels并重新安装会将其更新到更高优先级的通道。

所以请确保你从正确的渠道安装:)

仅使用环境变量:

python -m ipykernel install --user --name $(basename $VIRTUAL_ENV)

恼人的是,在你的tensorflow环境中,你可以运行jupyter notebook,而无需在该环境中安装jupyter。你就跑

(tensorflow) $ conda install jupyter

tensorflow环境现在应该在Jupyter notebook中可见,在任何conda环境中启动,类似于Python [conda env:tensorflow]。