我真的很渴望开始使用谷歌在c++中的新Tensorflow库。网站和文档在如何构建项目的c++ API方面真的不清楚,我不知道从哪里开始。
是否有更有经验的人可以通过发现和分享使用tensorflow的c++ API的指南来帮助您?
我真的很渴望开始使用谷歌在c++中的新Tensorflow库。网站和文档在如何构建项目的c++ API方面真的不清楚,我不知道从哪里开始。
是否有更有经验的人可以通过发现和分享使用tensorflow的c++ API的指南来帮助您?
当前回答
我们现在在https://github.com/ika-rwth-aachen/libtensorflow_cc上提供了一个预构建的库和Docker镜像,方便TensorFlow c++ API的安装和使用
我们提供了预构建的libtensorflow_cc。因此,将附带的头文件作为一个命令安装deb-package。 我们提供了一个基于官方TensorFlow Docker镜像的预构建Docker镜像。我们的Docker镜像同时安装了TensorFlow Python和TensorFlow c++。
通过运行示例应用程序自己尝试一下:
git clone https://github.com/ika-rwth-aachen/libtensorflow_cc.git && \
cd libtensorflow_cc && \
docker run --rm \
--volume $(pwd)/example:/example \
--workdir /example \
rwthika/tensorflow-cc:latest \
./build-and-run.sh
虽然我们目前只支持运行Ubuntu的x86_64机器,但将来可以很容易地扩展到其他操作系统和平台。除了一些例外,TensorFlow从2.0.0到2.9.2的所有版本都可用,2.10.0即将推出。
如果你想使用TensorFlow c++ API在c++中加载、检查和运行保存的模型和冻结的图形,我们建议你也检查我们的帮助库tensorflow_cpp。
其他回答
如果你不介意使用CMake,还有tensorflow_cc项目可以为你构建和安装TF c++ API,以及方便的CMake目标,你可以链接到它。项目README包含一个示例和Dockerfiles,您可以轻松地遵循。
如果你希望避免使用Bazel构建项目和生成大型二进制文件,我已经组装了一个库,指导使用CMake TensorFlow c++库。你可以在这里找到它。总体思路如下:
克隆TensorFlow存储库。 在tensorflow/ build中添加一个构建规则(提供的规则不包括所有c++功能)。 构建TensorFlow共享库。 安装特定版本的Eigen和Protobuf,或将它们作为外部依赖项添加。 配置你的CMake项目来使用TensorFlow库。
如果你不想自己构建Tensorflow,而且你的操作系统是Debian或Ubuntu,你可以下载带有Tensorflow C/ c++库的预构建包。这个发行版可以用于CPU的C/ c++推理,GPU支持不包括在内:
https://github.com/kecsap/tensorflow_cpp_packaging/releases
这里有一些关于如何在Tensorflow (TFLearn)中冻结检查点的说明,并使用C/ c++ API加载这个模型进行推理:
https://github.com/kecsap/tensorflow_cpp_packaging/blob/master/README.md
注意:我是这个Github项目的开发者。
如果你想在一个独立的包上使用Tensorflow c++ api,你可能需要tensorflow_cc。还有一个c api版本的tensorflow。所以)构建c++版本,你可以使用:
bazel build -c opt //tensorflow:libtensorflow_cc.so
注1:如果你想添加intrinsic支持,你可以添加这样的标志:——copt=-msse4.2——copt=-mavx
注2:如果你想在你的项目中也使用OpenCV,当同时使用两个库时(tensorflow问题),你应该使用——config=monolithic。
构建库后,需要将其添加到项目中。 要做到这一点,你可以包括以下路径:
tensorflow
tensorflow/bazel-tensorflow/external/eigen_archive
tensorflow/bazel-tensorflow/external/protobuf_archive/src
tensorflow/bazel-genfiles
并将库链接到您的项目:
tensorflow/bazel-bin/tensorflow/libtensorflow_framework.so (unused if you build with --config=monolithic)
tensorflow/bazel-bin/tensorflow/libtensorflow_cc.so
当你构建你的项目时,你还应该指定你的编译器,你将使用c++11标准。
附注:相对于tensorflow版本1.5的路径(您可能需要检查您的版本中是否有任何更改)。
这个链接也帮助我找到了所有这些信息:链接
我使用了一种hack/workaround来避免自己构建整个TF库(这节省了时间(3分钟即可完成设置)、磁盘空间、安装开发依赖项以及生成二进制文件的大小)。它是官方不支持的,但如果你只是想快速上手,效果很好。
Install TF through pip (pip install tensorflow or pip install tensorflow-gpu). Then find its library _pywrap_tensorflow.so (TF 0.* - 1.0) or _pywrap_tensorflow_internal.so (TF 1.1+). In my case (Ubuntu) it's located at /usr/local/lib/python2.7/dist-packages/tensorflow/python/_pywrap_tensorflow.so. Then create a symlink to this library called lib_pywrap_tensorflow.so somewhere where your build system finds it (e.g. /usr/lib/local). The prefix lib is important! You can also give it another lib*.so name - if you call it libtensorflow.so, you may get better compatibility with other programs written to work with TF.
然后创建一个你习惯的c++项目(CMake, Make, Bazel,任何你喜欢的)。
然后,您就可以链接到这个库,以便为您的项目提供TF(您还必须链接到python2.7库)!在CMake中,你只需要添加target_link_libraries(target _pywrap_tensorflow python2.7)。
c++头文件位于这个库附近,例如/usr/local/lib/python2.7/dist-packages/tensorflow/include/。
再次强调:这种方式是官方不支持的,您可能会遇到各种问题。这个库似乎是静态链接的,例如protobuf,所以你可能会在奇怪的链接时间或运行时问题中运行。但是我能够加载存储的图形,恢复权重并运行推理,这是我在c++中最想要的功能。