我真的很渴望开始使用谷歌在c++中的新Tensorflow库。网站和文档在如何构建项目的c++ API方面真的不清楚,我不知道从哪里开始。
是否有更有经验的人可以通过发现和分享使用tensorflow的c++ API的指南来帮助您?
我真的很渴望开始使用谷歌在c++中的新Tensorflow库。网站和文档在如何构建项目的c++ API方面真的不清楚,我不知道从哪里开始。
是否有更有经验的人可以通过发现和分享使用tensorflow的c++ API的指南来帮助您?
当前回答
为了补充@mrry的帖子,我整理了一个教程,解释如何用c++ API加载TensorFlow图。它非常简单,应该帮助您理解所有的部分是如何组合在一起的。这是它的核心:
要求:
巴泽尔安装 克隆TensorFlow回购
文件夹结构:
tensorflow tensorflow / | | /项目名称 Tensorflow / Tensorflow /|项目名称|/|项目名称|。Cc(例如https://gist.github.com/jimfleming/4202e529042c401b17b7) tensorflow / tensorflow / | |项目名称/构建
构建:
cc_binary(
name = "<project name>",
srcs = ["<project name>.cc"],
deps = [
"//tensorflow/core:tensorflow",
]
)
有两点需要注意,但可能有变通办法:
现在,构建需要在TensorFlow回购中进行。 编译后的二进制文件很大(103MB)。
https://medium.com/@jimfleming/loading-a-tensorflow-graph-with-the-c-api-4caaff88463f
其他回答
如果你不想自己构建Tensorflow,而且你的操作系统是Debian或Ubuntu,你可以下载带有Tensorflow C/ c++库的预构建包。这个发行版可以用于CPU的C/ c++推理,GPU支持不包括在内:
https://github.com/kecsap/tensorflow_cpp_packaging/releases
这里有一些关于如何在Tensorflow (TFLearn)中冻结检查点的说明,并使用C/ c++ API加载这个模型进行推理:
https://github.com/kecsap/tensorflow_cpp_packaging/blob/master/README.md
注意:我是这个Github项目的开发者。
如果你不介意使用CMake,还有tensorflow_cc项目可以为你构建和安装TF c++ API,以及方便的CMake目标,你可以链接到它。项目README包含一个示例和Dockerfiles,您可以轻松地遵循。
如果你希望避免使用Bazel构建项目和生成大型二进制文件,我已经组装了一个库,指导使用CMake TensorFlow c++库。你可以在这里找到它。总体思路如下:
克隆TensorFlow存储库。 在tensorflow/ build中添加一个构建规则(提供的规则不包括所有c++功能)。 构建TensorFlow共享库。 安装特定版本的Eigen和Protobuf,或将它们作为外部依赖项添加。 配置你的CMake项目来使用TensorFlow库。
我发现使用Tensorflow c++ API的一个替代方案是使用cppflow。
它是一个围绕Tensorflow C API的轻量级c++包装器。你得到非常小的可执行文件,它链接到libtensorflow。已经编译好的文件。还有一些使用的例子,您使用CMAKE而不是Bazel。
我使用了一种hack/workaround来避免自己构建整个TF库(这节省了时间(3分钟即可完成设置)、磁盘空间、安装开发依赖项以及生成二进制文件的大小)。它是官方不支持的,但如果你只是想快速上手,效果很好。
Install TF through pip (pip install tensorflow or pip install tensorflow-gpu). Then find its library _pywrap_tensorflow.so (TF 0.* - 1.0) or _pywrap_tensorflow_internal.so (TF 1.1+). In my case (Ubuntu) it's located at /usr/local/lib/python2.7/dist-packages/tensorflow/python/_pywrap_tensorflow.so. Then create a symlink to this library called lib_pywrap_tensorflow.so somewhere where your build system finds it (e.g. /usr/lib/local). The prefix lib is important! You can also give it another lib*.so name - if you call it libtensorflow.so, you may get better compatibility with other programs written to work with TF.
然后创建一个你习惯的c++项目(CMake, Make, Bazel,任何你喜欢的)。
然后,您就可以链接到这个库,以便为您的项目提供TF(您还必须链接到python2.7库)!在CMake中,你只需要添加target_link_libraries(target _pywrap_tensorflow python2.7)。
c++头文件位于这个库附近,例如/usr/local/lib/python2.7/dist-packages/tensorflow/include/。
再次强调:这种方式是官方不支持的,您可能会遇到各种问题。这个库似乎是静态链接的,例如protobuf,所以你可能会在奇怪的链接时间或运行时问题中运行。但是我能够加载存储的图形,恢复权重并运行推理,这是我在c++中最想要的功能。