我真的很渴望开始使用谷歌在c++中的新Tensorflow库。网站和文档在如何构建项目的c++ API方面真的不清楚,我不知道从哪里开始。

是否有更有经验的人可以通过发现和分享使用tensorflow的c++ API的指南来帮助您?


当前回答

我使用了一种hack/workaround来避免自己构建整个TF库(这节省了时间(3分钟即可完成设置)、磁盘空间、安装开发依赖项以及生成二进制文件的大小)。它是官方不支持的,但如果你只是想快速上手,效果很好。

Install TF through pip (pip install tensorflow or pip install tensorflow-gpu). Then find its library _pywrap_tensorflow.so (TF 0.* - 1.0) or _pywrap_tensorflow_internal.so (TF 1.1+). In my case (Ubuntu) it's located at /usr/local/lib/python2.7/dist-packages/tensorflow/python/_pywrap_tensorflow.so. Then create a symlink to this library called lib_pywrap_tensorflow.so somewhere where your build system finds it (e.g. /usr/lib/local). The prefix lib is important! You can also give it another lib*.so name - if you call it libtensorflow.so, you may get better compatibility with other programs written to work with TF.

然后创建一个你习惯的c++项目(CMake, Make, Bazel,任何你喜欢的)。

然后,您就可以链接到这个库,以便为您的项目提供TF(您还必须链接到python2.7库)!在CMake中,你只需要添加target_link_libraries(target _pywrap_tensorflow python2.7)。

c++头文件位于这个库附近,例如/usr/local/lib/python2.7/dist-packages/tensorflow/include/。

再次强调:这种方式是官方不支持的,您可能会遇到各种问题。这个库似乎是静态链接的,例如protobuf,所以你可能会在奇怪的链接时间或运行时问题中运行。但是我能够加载存储的图形,恢复权重并运行推理,这是我在c++中最想要的功能。

其他回答

如果你不介意使用CMake,还有tensorflow_cc项目可以为你构建和安装TF c++ API,以及方便的CMake目标,你可以链接到它。项目README包含一个示例和Dockerfiles,您可以轻松地遵循。

首先,您应该按照这里的说明从Github下载源代码(您需要Bazel和最新版本的GCC)。

The C++ API (and the backend of the system) is in tensorflow/core. Right now, only the C++ Session interface, and the C API are being supported. You can use either of these to execute TensorFlow graphs that have been built using the Python API and serialized to a GraphDef protocol buffer. There is also an experimental feature for building graphs in C++, but this is currently not quite as full-featured as the Python API (e.g. no support for auto-differentiation at present). You can see an example program that builds a small graph in C++ here.

c++ API的第二部分是用于添加新的OpKernel的API,这是一个包含CPU和GPU的数值内核实现的类。在tensorflow/core/kernels中有许多如何构建这些操作的示例,以及在c++中添加新操作的教程。

首先,在安装了protobuf和eigen之后,你想要构建Tensorflow:

./configure
bazel build //tensorflow:libtensorflow_cc.so

然后复制以下include头文件和动态共享库到/usr/local/lib和/usr/local/include:

mkdir /usr/local/include/tf
cp -r bazel-genfiles/ /usr/local/include/tf/
cp -r tensorflow /usr/local/include/tf/
cp -r third_party /usr/local/include/tf/
cp -r bazel-bin/libtensorflow_cc.so /usr/local/lib/

最后,使用一个示例编译:

g++ -std=c++11 -o tf_example \
-I/usr/local/include/tf \
-I/usr/local/include/eigen3 \
-g -Wall -D_DEBUG -Wshadow -Wno-sign-compare -w  \
-L/usr/local/lib/libtensorflow_cc \
`pkg-config --cflags --libs protobuf` -ltensorflow_cc tf_example.cpp

上面的答案足以说明如何构建库,但是如何收集头文件仍然很棘手。在这里我分享我用来复制必要的头文件的小脚本。

SOURCE是第一个参数,它是tensorflow SOURCE (build) direcoty; DST是第二个参数,包含目录保存收集的头文件。(如。在cmake中,include_directories(./collected_headers_here))。

#!/bin/bash

SOURCE=$1
DST=$2
echo "-- target dir is $DST"
echo "-- source dir is $SOURCE"

if [[ -e $DST ]];then
    echo "clean $DST"
    rm -rf $DST
    mkdir $DST
fi


# 1. copy the source code c++ api needs
mkdir -p $DST/tensorflow
cp -r $SOURCE/tensorflow/core $DST/tensorflow
cp -r $SOURCE/tensorflow/cc $DST/tensorflow
cp -r $SOURCE/tensorflow/c $DST/tensorflow

# 2. copy the generated code, put them back to
# the right directories along side the source code
if [[ -e $SOURCE/bazel-genfiles/tensorflow ]];then
    prefix="$SOURCE/bazel-genfiles/tensorflow"
    from=$(expr $(echo -n $prefix | wc -m) + 1)

    # eg. compiled protobuf files
    find $SOURCE/bazel-genfiles/tensorflow -type f | while read line;do
        #echo "procese file --> $line"
        line_len=$(echo -n $line | wc -m)
        filename=$(echo $line | rev | cut -d'/' -f1 | rev )
        filename_len=$(echo -n $filename | wc -m)
        to=$(expr $line_len - $filename_len)

        target_dir=$(echo $line | cut -c$from-$to)
        #echo "[$filename] copy $line $DST/tensorflow/$target_dir"
        cp $line $DST/tensorflow/$target_dir
    done
fi


# 3. copy third party files. Why?
# In the tf source code, you can see #include "third_party/...", so you need it
cp -r $SOURCE/third_party $DST

# 4. these headers are enough for me now.
# if your compiler complains missing headers, maybe you can find it in bazel-tensorflow/external
cp -RLf $SOURCE/bazel-tensorflow/external/eigen_archive/Eigen $DST
cp -RLf $SOURCE/bazel-tensorflow/external/eigen_archive/unsupported $DST
cp -RLf $SOURCE/bazel-tensorflow/external/protobuf_archive/src/google $DST
cp -RLf $SOURCE/bazel-tensorflow/external/com_google_absl/absl $DST

Tensorflow本身只提供了关于c++ api的非常基本的示例。 这是一个很好的资源,包括数据集的例子,rnn, lstm, cnn等 Tensorflow c++的例子