在python中旋转列表最有效的方法是什么? 现在我有这样的东西:

>>> def rotate(l, n):
...     return l[n:] + l[:n]
... 
>>> l = [1,2,3,4]
>>> rotate(l,1)
[2, 3, 4, 1]
>>> rotate(l,2)
[3, 4, 1, 2]
>>> rotate(l,0)
[1, 2, 3, 4]
>>> rotate(l,-1)
[4, 1, 2, 3]

有没有更好的办法?


当前回答

另一个选择:

def move(arr, n):
    return [arr[(idx-n) % len(arr)] for idx,_ in enumerate(arr)]

其他回答

deque对两端的拉和推进行了优化。它们甚至有一个专用的rotate()方法。

from collections import deque
items = deque([1, 2])
items.append(3)        # deque == [1, 2, 3]
items.rotate(1)        # The deque is now: [3, 1, 2]
items.rotate(-1)       # Returns deque to original state: [1, 2, 3]
item = items.popleft() # deque == [2, 3]

Jon Bentley在Programming Pearls(第2专栏)中描述了一个优雅而高效的算法,用于将n元素向量x向左旋转i个位置:

让我们把这个问题看作是把数组ab转换成数组 Ba,但我们也假设我们有一个函数,它与 数组的指定部分中的元素。从ab开始 反转a得到arb,反转b得到 Arbr,然后反转整个 得到(arbr)r, 就是。这将产生以下代码 旋转: 反向张(0) 反向(n - 1),我 反向(0,n - 1)

这可以被翻译成Python:

def rotate(x, i):
    i %= len(x)
    x[:i] = reversed(x[:i])
    x[i:] = reversed(x[i:])
    x[:] = reversed(x)
    return x

演示:

>>> def rotate(x, i):
...     i %= len(x)
...     x[:i] = reversed(x[:i])
...     x[i:] = reversed(x[i:])
...     x[:] = reversed(x)
...     return x
... 
>>> rotate(list('abcdefgh'), 1)
['b', 'c', 'd', 'e', 'f', 'g', 'h', 'a']
>>> rotate(list('abcdefgh'), 3)
['d', 'e', 'f', 'g', 'h', 'a', 'b', 'c']
>>> rotate(list('abcdefgh'), 8)
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
>>> rotate(list('abcdefgh'), 9)
['b', 'c', 'd', 'e', 'f', 'g', 'h', 'a']

我以这个成本模型作为参考:

http://scripts.mit.edu/~6.006/fall07/wiki/index.php?title=Python_Cost_Model

切片列表和连接两个子列表的方法是线性时间操作。我建议使用pop,这是一个常数时间操作,例如:

def shift(list, n):
    for i in range(n)
        temp = list.pop()
        list.insert(0, temp)

我也对此感兴趣,并将一些建议的解决方案与perfplot(我的一个小项目)进行了比较。

事实证明凯利·邦迪的建议

tmp = data[shift:]
tmp += data[:shift]

在所有轮班中都表现良好。

从本质上讲,perfplot执行增加大型数组的移位并测量时间。以下是调查结果:

Shift = 1:

Shift = 100:


代码重现情节:

import numpy
import perfplot
import collections


shift = 100


def list_append(data):
    return data[shift:] + data[:shift]


def list_append2(data):
    tmp = data[shift:]
    tmp += data[:shift]
    return tmp


def shift_concatenate(data):
    return numpy.concatenate([data[shift:], data[:shift]])


def roll(data):
    return numpy.roll(data, -shift)


def collections_deque(data):
    items = collections.deque(data)
    items.rotate(-shift)
    return items


def pop_append(data):
    data = data.copy()
    for _ in range(shift):
        data.append(data.pop(0))
    return data


b = perfplot.bench(
    setup=lambda n: numpy.random.rand(n).tolist(),
    kernels=[
        list_append,
        list_append2,
        roll,
        shift_concatenate,
        collections_deque,
        pop_append,
    ],
    n_range=[2 ** k for k in range(7, 20)],
    xlabel="len(data)",
)
b.show()
b.save("shift100.png")

下面是一个高效的算法,不需要使用任何额外的数据结构:

旋转(nums: List[int], k: int):

    k = k%len(nums)
    l, r = 0, len(nums)-1
    while (l<r):
        nums[l], nums[r]= nums[r], nums[l]
        l,r=l+1,r-1
    
    l,r = 0, k-1
    while (l<r):
        nums[l], nums[r]=nums[r], nums[l]
        l,r=l+1,r-1
        
    l,r=k,len(nums)-1
    while (l<r):
        nums[l], nums[r]=nums[r], nums[l]
        l,r=l+1,r-1