在python中旋转列表最有效的方法是什么? 现在我有这样的东西:
>>> def rotate(l, n):
... return l[n:] + l[:n]
...
>>> l = [1,2,3,4]
>>> rotate(l,1)
[2, 3, 4, 1]
>>> rotate(l,2)
[3, 4, 1, 2]
>>> rotate(l,0)
[1, 2, 3, 4]
>>> rotate(l,-1)
[4, 1, 2, 3]
有没有更好的办法?
在python中旋转列表最有效的方法是什么? 现在我有这样的东西:
>>> def rotate(l, n):
... return l[n:] + l[:n]
...
>>> l = [1,2,3,4]
>>> rotate(l,1)
[2, 3, 4, 1]
>>> rotate(l,2)
[3, 4, 1, 2]
>>> rotate(l,0)
[1, 2, 3, 4]
>>> rotate(l,-1)
[4, 1, 2, 3]
有没有更好的办法?
当前回答
另一个选择:
def move(arr, n):
return [arr[(idx-n) % len(arr)] for idx,_ in enumerate(arr)]
其他回答
deque对两端的拉和推进行了优化。它们甚至有一个专用的rotate()方法。
from collections import deque
items = deque([1, 2])
items.append(3) # deque == [1, 2, 3]
items.rotate(1) # The deque is now: [3, 1, 2]
items.rotate(-1) # Returns deque to original state: [1, 2, 3]
item = items.popleft() # deque == [2, 3]
Jon Bentley在Programming Pearls(第2专栏)中描述了一个优雅而高效的算法,用于将n元素向量x向左旋转i个位置:
让我们把这个问题看作是把数组ab转换成数组 Ba,但我们也假设我们有一个函数,它与 数组的指定部分中的元素。从ab开始 反转a得到arb,反转b得到 Arbr,然后反转整个 得到(arbr)r, 就是。这将产生以下代码 旋转: 反向张(0) 反向(n - 1),我 反向(0,n - 1)
这可以被翻译成Python:
def rotate(x, i):
i %= len(x)
x[:i] = reversed(x[:i])
x[i:] = reversed(x[i:])
x[:] = reversed(x)
return x
演示:
>>> def rotate(x, i):
... i %= len(x)
... x[:i] = reversed(x[:i])
... x[i:] = reversed(x[i:])
... x[:] = reversed(x)
... return x
...
>>> rotate(list('abcdefgh'), 1)
['b', 'c', 'd', 'e', 'f', 'g', 'h', 'a']
>>> rotate(list('abcdefgh'), 3)
['d', 'e', 'f', 'g', 'h', 'a', 'b', 'c']
>>> rotate(list('abcdefgh'), 8)
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
>>> rotate(list('abcdefgh'), 9)
['b', 'c', 'd', 'e', 'f', 'g', 'h', 'a']
我以这个成本模型作为参考:
http://scripts.mit.edu/~6.006/fall07/wiki/index.php?title=Python_Cost_Model
切片列表和连接两个子列表的方法是线性时间操作。我建议使用pop,这是一个常数时间操作,例如:
def shift(list, n):
for i in range(n)
temp = list.pop()
list.insert(0, temp)
我也对此感兴趣,并将一些建议的解决方案与perfplot(我的一个小项目)进行了比较。
事实证明凯利·邦迪的建议
tmp = data[shift:]
tmp += data[:shift]
在所有轮班中都表现良好。
从本质上讲,perfplot执行增加大型数组的移位并测量时间。以下是调查结果:
Shift = 1:
Shift = 100:
代码重现情节:
import numpy
import perfplot
import collections
shift = 100
def list_append(data):
return data[shift:] + data[:shift]
def list_append2(data):
tmp = data[shift:]
tmp += data[:shift]
return tmp
def shift_concatenate(data):
return numpy.concatenate([data[shift:], data[:shift]])
def roll(data):
return numpy.roll(data, -shift)
def collections_deque(data):
items = collections.deque(data)
items.rotate(-shift)
return items
def pop_append(data):
data = data.copy()
for _ in range(shift):
data.append(data.pop(0))
return data
b = perfplot.bench(
setup=lambda n: numpy.random.rand(n).tolist(),
kernels=[
list_append,
list_append2,
roll,
shift_concatenate,
collections_deque,
pop_append,
],
n_range=[2 ** k for k in range(7, 20)],
xlabel="len(data)",
)
b.show()
b.save("shift100.png")
下面是一个高效的算法,不需要使用任何额外的数据结构:
旋转(nums: List[int], k: int):
k = k%len(nums)
l, r = 0, len(nums)-1
while (l<r):
nums[l], nums[r]= nums[r], nums[l]
l,r=l+1,r-1
l,r = 0, k-1
while (l<r):
nums[l], nums[r]=nums[r], nums[l]
l,r=l+1,r-1
l,r=k,len(nums)-1
while (l<r):
nums[l], nums[r]=nums[r], nums[l]
l,r=l+1,r-1