如何找到在Linux上运行的C++应用程序中运行缓慢的代码区域?


当前回答

事实上,没有多少人提到google/基准测试,这有点让人惊讶,虽然固定代码的特定区域有点麻烦,特别是如果代码库有点大的话,但是我发现这在与callgrind结合使用时非常有用

IMHO识别导致瓶颈的工件是这里的关键。不过,我会先尝试回答以下问题,然后根据这些问题选择工具

我的算法正确吗?有锁被证明是瓶颈吗?是否有一段特定的代码被证明是罪魁祸首?IO如何处理和优化?

valgrind与callgrind和kcachegrind的结合应该能对以上几点提供一个不错的估计,一旦确定某段代码存在问题,我建议做一个微基准测试——谷歌基准测试是一个很好的开始。

其他回答

使用Valgrind、callgrind和kcachegrind:

valgrind --tool=callgrind ./(Your binary)

生成callgrind.out.x。使用kcachegrind读取它。

使用gprof(add-pg):

cc -o myprog myprog.c utils.c -g -pg 

(对于多线程、函数指针不太好)

使用google perftools:

使用时间采样,可以发现I/O和CPU瓶颈。

英特尔VTune是最好的(出于教育目的免费)。

其他:AMD Codeanalysis(已被AMD CodeXL取代)、OProfile、“perf”工具(apt-get-install-linux工具)

由于没有人提到Arm MAP,我想补充一下,因为我个人已经成功地使用了MAP来描述C++科学程序。

Arm MAP是并行、多线程或单线程C、C++、Fortran和F90代码的分析器。它提供了深入的分析和对源代码线的瓶颈定位。与大多数评测器不同,它被设计为能够评测pthreads、OpenMP或MPI的并行和线程代码。

MAP是商业软件。

使用具有以下选项的Valgrind:

valgrind --tool=callgrind ./(Your binary)

这将生成一个名为callgrind.out.x的文件。使用kcachegrind工具读取该文件。它会给你一个图形化的分析结果,比如哪一行花费多少。

编译和链接代码并运行可执行文件时,请使用-pg标志。执行此程序时,分析数据收集在文件a.out中。有两种不同类型的分析

1-平面轮廓:通过运行命令gprog--flat profile a.out,可以获得以下数据-该功能所花费的总时间的百分比,-在包括和排除对子函数的调用的函数中花费了多少秒,-呼叫的数量,-每次通话的平均时间。

2-图形分析使用命令gprof--graph a.out获取每个函数的以下数据,其中包括-在每个部分中,一个函数都标有索引编号。-在函数上方,有一个调用该函数的函数列表。-在函数下面,有一个函数调用的函数列表。

要获取更多信息,请查看https://sourceware.org/binutils/docs-2.32/gprof/

这是对Nazgob Gprof回答的回应。

过去几天我一直在使用Gprof,已经发现了三个重要的限制,其中一个是我在其他地方还没有看到过的:

它不能在多线程代码上正常工作,除非您使用变通方法调用图被函数指针弄糊涂了。示例:我有一个名为multithread()的函数,它使我能够在指定的数组上对指定的函数进行多线程处理(两者都作为参数传递)。然而,Gprof将所有对多线程()的调用视为等效的,以计算在孩子身上花费的时间。由于我传递给多线程()的一些函数花费的时间比其他函数长得多,所以我的调用图基本上是无用的。(对于那些想知道线程是否是这里的问题的人来说:不,多线程()可以选择,在这种情况下,只在调用线程上按顺序运行所有内容)。这里说“……调用数数字是通过计数而不是采样得出的。它们是完全准确的……”。然而,我发现我的调用图给了我5345859132+784984078作为对我调用最多的函数的调用统计数据,其中第一个数字应该是直接调用,第二个递归调用(都来自它本身)。因为这意味着我有一个bug,所以我在代码中加入了长(64位)计数器,并再次运行相同的程序。我的计数:5345859132个直接调用和78094395406个自递归调用。这里有很多数字,所以我要指出,我测量的递归调用是780亿,而Gprof是7.84亿:相差100倍。两次运行都是单线程和未优化的代码,一次是编译的-g,另一次是-pg。

这是在64位Debian Lenny下运行的GNUGprof(Debian的GNUBinutils)2.18.0.20080103,如果这对任何人都有帮助的话。