我想找出我的数据的每一列中NaN的数量。
当前回答
希望这能有所帮助,
import pandas as pd
import numpy as np
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan],'c':[np.nan,2,np.nan], 'd':[np.nan,np.nan,np.nan]})
df.isnull().sum()/len(df) * 100
Thres = 40
(df.isnull().sum()/len(df) * 100 ) < Thres
其他回答
根据给出的答案和一些改进,这是我的方法
def PercentageMissin(Dataset):
"""this function will return the percentage of missing values in a dataset """
if isinstance(Dataset,pd.DataFrame):
adict={} #a dictionary conatin keys columns names and values percentage of missin value in the columns
for col in Dataset.columns:
adict[col]=(np.count_nonzero(Dataset[col].isnull())*100)/len(Dataset[col])
return pd.DataFrame(adict,index=['% of missing'],columns=adict.keys())
else:
raise TypeError("can only be used with panda dataframe")
你可以从非nan值的计数中减去总长度:
count_nan = len(df) - df.count()
你应该根据你的数据计算时间。与isnull解相比,小级数的速度提高了3倍。
你可以试试:
In [1]: s = pd.DataFrame('a'=[1,2,5, np.nan, np.nan,3],'b'=[1,3, np.nan, np.nan,3,np.nan])
In [4]: s.isna().sum()
Out[4]: out = {'a'=2, 'b'=3} # the number of NaN values for each column
如果需要nan的总和:
In [5]: s.isna().sum().sum()
Out[6]: out = 5 #the inline sum of Out[4]
我使用这个循环来计算每一列的缺失值:
# check missing values
import numpy as np, pandas as pd
for col in df:
print(col +': '+ np.str(df[col].isna().sum()))
使用isna()方法(或者它的别名isnull(),这也兼容较旧的pandas版本< 0.21.0),然后求和来计算NaN值。其中一列:
>>> s = pd.Series([1,2,3, np.nan, np.nan])
>>> s.isna().sum() # or s.isnull().sum() for older pandas versions
2
对于一些列,这也适用:
>>> df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
>>> df.isna().sum()
a 1
b 2
dtype: int64
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 确定每列中NA值的个数
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 如何结合多个条件子集数据帧使用“或”?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式