在tf.nn中“SAME”和“VALID”填充之间的区别是什么?tensorflow的Max_pool ?

在我看来,'VALID'意味着当我们做max pool时,边缘外不会有零填充。

根据深度学习卷积算法指南,它说池操作符中不会有填充,即只使用tensorflow的“VALID”。 但什么是'SAME'填充的最大池张量流量?


当前回答

TensorFlow Convolution的例子概述了SAME和VALID的区别:

对于相同的填充,输出的高度和宽度计算如下: Out_height = ceil(float(in_height) / float(strides[1])) Out_width = ceil(float(in_width) / float(strides[2]))

And

对于VALID填充,输出高度和宽度的计算如下: Out_height = ceil(float(in_height - filter_height + 1) / float(strides[1])) Out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))

其他回答

TensorFlow Convolution的例子概述了SAME和VALID的区别:

对于相同的填充,输出的高度和宽度计算如下: Out_height = ceil(float(in_height) / float(strides[1])) Out_width = ceil(float(in_width) / float(strides[2]))

And

对于VALID填充,输出高度和宽度的计算如下: Out_height = ceil(float(in_height - filter_height + 1) / float(strides[1])) Out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))

我举个例子来说明:

X:输入形状[2,3]的图像,1通道 valid_pad: max pool with 2x2 kernel, stride 2和VALID padding。 same_pad: max pool with 2x2 kernel, stride 2和SAME padding(这是经典的方法)

输出形状为:

Valid_pad:这里没有填充,所以输出形状是[1,1] Same_pad:在这里,我们将图像填充到形状[2,4](使用-inf,然后应用Max pool),因此输出形状是[1,2]


x = tf.constant([[1., 2., 3.],
                 [4., 5., 6.]])

x = tf.reshape(x, [1, 2, 3, 1])  # give a shape accepted by tf.nn.max_pool

valid_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
same_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')

valid_pad.get_shape() == [1, 1, 1, 1]  # valid_pad is [5.]
same_pad.get_shape() == [1, 1, 2, 1]   # same_pad is  [5., 6.]

有效填充:这是零填充。希望没有混淆。

x = tf.constant([[1., 2., 3.], [4., 5., 6.],[ 7., 8., 9.], [ 7., 8., 9.]])
x = tf.reshape(x, [1, 4, 3, 1])
valid_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
print (valid_pad.get_shape()) # output-->(1, 2, 1, 1)

相同填充:首先,这有点难以理解,因为我们必须分别考虑官方文档中提到的两个条件。

假设输入为,输出为,填充为,步幅为,内核大小为(只考虑单个维度)

案例01::

案例02::

被计算为可用于填充的最小值。由于的值是已知的,可以用这个公式求出值。

让我们来做这个例子:

x = tf.constant([[1., 2., 3.], [4., 5., 6.],[ 7., 8., 9.], [ 7., 8., 9.]])
x = tf.reshape(x, [1, 4, 3, 1])
same_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
print (same_pad.get_shape()) # --> output (1, 2, 2, 1)

这里x的维数是(3,4)那么如果取水平方向(3):

若取垂直方向(4):

希望这将有助于理解实际上相同填充是如何在TF中工作的。

Tensorflow 2.0兼容答案:上面已经提供了关于“有效”和“相同”填充的详细解释。

但是,我将在Tensorflow 2中指定不同的池化函数和它们各自的命令。X(>= 2.0),为社区的利益。

1.x中的函数:

tf.nn.max_pool

tf.keras.layers.MaxPool2D

tf中平均池值=>无。神经网络,tf.keras.layers.AveragePooling2D

2.x中的函数:

tf.nn。Max_pool如果在2中使用。如果从1迁移,则tf. compat_v1 .nn.max_pool_v2或tf. compat_v2 .nn.max_pool。X到2。X。

tf.keras.layers。MaxPool2D如果在2中使用。x和

tf. compat_v1 .keras.layers. maxpooling2d或tf. compat_v1 .keras.layers. maxpooling2d或tf. compat_v2 .keras.layers. maxpooling2d或tf. compat_v2 .keras.layers. maxpooling2d,如果从1迁移。X到2。X。

平均池=> tf.nn。Avg_pool2d或tf.keras.layers。如果在TF 2中使用AveragePooling2D。x和

tf. compat_v1 . dn .avg_pool_v2或tf. compat_v2 .v2. dn .avg_pool或tf. compat_v1 .keras.layers. averagepooling2d或tf. compat_v1 .keras.layers. avgpool2d或tf. compat_v2 .keras.layers. averagepooling2d或tf. compat_v2 .keras.layers. avgpool2d,如果从1迁移。X到2。X。

有关Tensorflow迁移的更多信息。X到2。请参考本迁移指南。

快速的解释

VALID:不要应用任何填充,也就是说,假设所有的维度都是有效的,这样输入的图像就会被你指定的过滤器和stride完全覆盖。

SAME:应用填充到输入(如果需要),以便输入图像被过滤器和步幅完全覆盖。对于stride 1,这将确保输出图像大小与输入相同。

笔记

This applies to conv layers as well as max pool layers in same way The term "valid" is bit of a misnomer because things don't become "invalid" if you drop part of the image. Sometime you might even want that. This should have probably be called NO_PADDING instead. The term "same" is a misnomer too because it only makes sense for stride of 1 when output dimension is same as input dimension. For stride of 2, output dimensions will be half, for example. This should have probably be called AUTO_PADDING instead. In SAME (i.e. auto-pad mode), Tensorflow will try to spread padding evenly on both left and right. In VALID (i.e. no padding mode), Tensorflow will drop right and/or bottom cells if your filter and stride doesn't full cover input image.