在tf.nn中“SAME”和“VALID”填充之间的区别是什么?tensorflow的Max_pool ?

在我看来,'VALID'意味着当我们做max pool时,边缘外不会有零填充。

根据深度学习卷积算法指南,它说池操作符中不会有填充,即只使用tensorflow的“VALID”。 但什么是'SAME'填充的最大池张量流量?


当前回答

我引用了官方tensorflow文档https://www.tensorflow.org/api_guides/python/nn#Convolution中的答案 对于'SAME'填充,输出高度和宽度的计算如下:

out_height = ceil(float(in_height) / float(strides[1]))
out_width  = ceil(float(in_width) / float(strides[2]))

顶部和左侧的填充被计算为:

pad_along_height = max((out_height - 1) * strides[1] +
                    filter_height - in_height, 0)
pad_along_width = max((out_width - 1) * strides[2] +
                   filter_width - in_width, 0)
pad_top = pad_along_height // 2
pad_bottom = pad_along_height - pad_top
pad_left = pad_along_width // 2
pad_right = pad_along_width - pad_left

对于'VALID'填充,输出高度和宽度的计算如下:

out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
out_width  = ceil(float(in_width - filter_width + 1) / float(strides[2]))

填充值总是0。

其他回答

TensorFlow Convolution的例子概述了SAME和VALID的区别:

对于相同的填充,输出的高度和宽度计算如下: Out_height = ceil(float(in_height) / float(strides[1])) Out_width = ceil(float(in_width) / float(strides[2]))

And

对于VALID填充,输出高度和宽度的计算如下: Out_height = ceil(float(in_height - filter_height + 1) / float(strides[1])) Out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))

我引用了官方tensorflow文档https://www.tensorflow.org/api_guides/python/nn#Convolution中的答案 对于'SAME'填充,输出高度和宽度的计算如下:

out_height = ceil(float(in_height) / float(strides[1]))
out_width  = ceil(float(in_width) / float(strides[2]))

顶部和左侧的填充被计算为:

pad_along_height = max((out_height - 1) * strides[1] +
                    filter_height - in_height, 0)
pad_along_width = max((out_width - 1) * strides[2] +
                   filter_width - in_width, 0)
pad_top = pad_along_height // 2
pad_bottom = pad_along_height - pad_top
pad_left = pad_along_width // 2
pad_right = pad_along_width - pad_left

对于'VALID'填充,输出高度和宽度的计算如下:

out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
out_width  = ceil(float(in_width - filter_width + 1) / float(strides[2]))

填充值总是0。

我举个例子来说明:

X:输入形状[2,3]的图像,1通道 valid_pad: max pool with 2x2 kernel, stride 2和VALID padding。 same_pad: max pool with 2x2 kernel, stride 2和SAME padding(这是经典的方法)

输出形状为:

Valid_pad:这里没有填充,所以输出形状是[1,1] Same_pad:在这里,我们将图像填充到形状[2,4](使用-inf,然后应用Max pool),因此输出形状是[1,2]


x = tf.constant([[1., 2., 3.],
                 [4., 5., 6.]])

x = tf.reshape(x, [1, 2, 3, 1])  # give a shape accepted by tf.nn.max_pool

valid_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
same_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')

valid_pad.get_shape() == [1, 1, 1, 1]  # valid_pad is [5.]
same_pad.get_shape() == [1, 1, 2, 1]   # same_pad is  [5., 6.]

如果你喜欢ascii艺术:

"VALID" = without padding: inputs: 1 2 3 4 5 6 7 8 9 10 11 (12 13) |________________| dropped |_________________| "SAME" = with zero padding: pad| |pad inputs: 0 |1 2 3 4 5 6 7 8 9 10 11 12 13|0 0 |________________| |_________________| |________________|

在这个例子中:

输入宽度= 13 滤镜宽度= 6 步幅= 5

注:

"VALID"只删除最右边的列(或最底部的行)。 “SAME”尝试均匀地左右填充,但如果要添加的列的数量是奇数,它会将额外的列添加到右侧,就像本例中的情况一样(垂直方向上的逻辑相同:底部可能有额外的一行零)。

编辑:

关于名字:

对于“SAME”填充,如果你使用的步幅为1,该层的输出将具有与其输入相同的空间维度。 使用“VALID”填充,就没有“编造”填充输入。该层只使用有效的输入数据。

总之,“有效”填充意味着没有填充。卷积层的输出大小根据输入大小和内核大小而缩小。

相反,“相同”填充意味着使用填充。当stride设置为1时,卷积层的输出大小保持为输入大小,在计算卷积时在输入数据周围附加一定数量的“0-border”。

希望这个直观的描述能有所帮助。