在tf.nn中“SAME”和“VALID”填充之间的区别是什么?tensorflow的Max_pool ?

在我看来,'VALID'意味着当我们做max pool时,边缘外不会有零填充。

根据深度学习卷积算法指南,它说池操作符中不会有填充,即只使用tensorflow的“VALID”。 但什么是'SAME'填充的最大池张量流量?


当前回答

填充是一种增加输入数据大小的操作。在一维数据中,你只需要在数组前加上一个常数,在2-dim中,你用这些常数包围矩阵。在n-dim中,用常数包围n-dim超立方体。在大多数情况下,这个常数是零,它被称为零填充。

下面是一个应用于2-d张量的p=1的零填充的例子:


你可以为你的内核使用任意填充,但是有些填充值比其他填充值使用得更频繁:

有效的填充。最简单的情况,意味着根本没有填充。让你的数据保持原样。 相同填充有时称为半填充。之所以称为SAME,是因为对于stride=1的卷积(或池化),它应该产生与输入相同大小的输出。之所以叫HALF是因为对于一个大小为k的核 FULL填充是最大填充,它不会导致对刚刚填充的元素进行卷积。对于一个大小为k的核,这个填充值等于k - 1。


要在TF中使用任意填充,可以使用TF .pad()

其他回答

根据这里的解释和Tristan的回答,我通常使用这些快速函数进行完整性检查。

# a function to help us stay clean
def getPaddings(pad_along_height,pad_along_width):
    # if even.. easy..
    if pad_along_height%2 == 0:
        pad_top = pad_along_height / 2
        pad_bottom = pad_top
    # if odd
    else:
        pad_top = np.floor( pad_along_height / 2 )
        pad_bottom = np.floor( pad_along_height / 2 ) +1
    # check if width padding is odd or even
    # if even.. easy..
    if pad_along_width%2 == 0:
        pad_left = pad_along_width / 2
        pad_right= pad_left
    # if odd
    else:
        pad_left = np.floor( pad_along_width / 2 )
        pad_right = np.floor( pad_along_width / 2 ) +1
        #
    return pad_top,pad_bottom,pad_left,pad_right

# strides [image index, y, x, depth]
# padding 'SAME' or 'VALID'
# bottom and right sides always get the one additional padded pixel (if padding is odd)
def getOutputDim (inputWidth,inputHeight,filterWidth,filterHeight,strides,padding):
    if padding == 'SAME':
        out_height = np.ceil(float(inputHeight) / float(strides[1]))
        out_width  = np.ceil(float(inputWidth) / float(strides[2]))
        #
        pad_along_height = ((out_height - 1) * strides[1] + filterHeight - inputHeight)
        pad_along_width = ((out_width - 1) * strides[2] + filterWidth - inputWidth)
        #
        # now get padding
        pad_top,pad_bottom,pad_left,pad_right = getPaddings(pad_along_height,pad_along_width)
        #
        print 'output height', out_height
        print 'output width' , out_width
        print 'total pad along height' , pad_along_height
        print 'total pad along width' , pad_along_width
        print 'pad at top' , pad_top
        print 'pad at bottom' ,pad_bottom
        print 'pad at left' , pad_left
        print 'pad at right' ,pad_right

    elif padding == 'VALID':
        out_height = np.ceil(float(inputHeight - filterHeight + 1) / float(strides[1]))
        out_width  = np.ceil(float(inputWidth - filterWidth + 1) / float(strides[2]))
        #
        print 'output height', out_height
        print 'output width' , out_width
        print 'no padding'


# use like so
getOutputDim (80,80,4,4,[1,1,1,1],'SAME')

如果你喜欢ascii艺术:

"VALID" = without padding: inputs: 1 2 3 4 5 6 7 8 9 10 11 (12 13) |________________| dropped |_________________| "SAME" = with zero padding: pad| |pad inputs: 0 |1 2 3 4 5 6 7 8 9 10 11 12 13|0 0 |________________| |_________________| |________________|

在这个例子中:

输入宽度= 13 滤镜宽度= 6 步幅= 5

注:

"VALID"只删除最右边的列(或最底部的行)。 “SAME”尝试均匀地左右填充,但如果要添加的列的数量是奇数,它会将额外的列添加到右侧,就像本例中的情况一样(垂直方向上的逻辑相同:底部可能有额外的一行零)。

编辑:

关于名字:

对于“SAME”填充,如果你使用的步幅为1,该层的输出将具有与其输入相同的空间维度。 使用“VALID”填充,就没有“编造”填充输入。该层只使用有效的输入数据。

当stride为1时(卷积比池化更典型),我们可以想到以下区别:

“SAME”:输出大小与输入大小相同。这就要求滤镜窗口要在输入贴图外滑动,因此需要垫片。 "VALID":过滤器窗口保持在输入映射中的有效位置,因此输出大小缩小为filter_size - 1。没有填充。

总之,“有效”填充意味着没有填充。卷积层的输出大小根据输入大小和内核大小而缩小。

相反,“相同”填充意味着使用填充。当stride设置为1时,卷积层的输出大小保持为输入大小,在计算卷积时在输入数据周围附加一定数量的“0-border”。

希望这个直观的描述能有所帮助。

这里W和H是输入的宽和高, F为滤波器维数, P是填充大小(即要填充的行数或列数)

对于相同的填充:

对于有效填充: