在tf.nn中“SAME”和“VALID”填充之间的区别是什么?tensorflow的Max_pool ?
在我看来,'VALID'意味着当我们做max pool时,边缘外不会有零填充。
根据深度学习卷积算法指南,它说池操作符中不会有填充,即只使用tensorflow的“VALID”。 但什么是'SAME'填充的最大池张量流量?
在tf.nn中“SAME”和“VALID”填充之间的区别是什么?tensorflow的Max_pool ?
在我看来,'VALID'意味着当我们做max pool时,边缘外不会有零填充。
根据深度学习卷积算法指南,它说池操作符中不会有填充,即只使用tensorflow的“VALID”。 但什么是'SAME'填充的最大池张量流量?
当前回答
Tensorflow 2.0兼容答案:上面已经提供了关于“有效”和“相同”填充的详细解释。
但是,我将在Tensorflow 2中指定不同的池化函数和它们各自的命令。X(>= 2.0),为社区的利益。
1.x中的函数:
tf.nn.max_pool
tf.keras.layers.MaxPool2D
tf中平均池值=>无。神经网络,tf.keras.layers.AveragePooling2D
2.x中的函数:
tf.nn。Max_pool如果在2中使用。如果从1迁移,则tf. compat_v1 .nn.max_pool_v2或tf. compat_v2 .nn.max_pool。X到2。X。
tf.keras.layers。MaxPool2D如果在2中使用。x和
tf. compat_v1 .keras.layers. maxpooling2d或tf. compat_v1 .keras.layers. maxpooling2d或tf. compat_v2 .keras.layers. maxpooling2d或tf. compat_v2 .keras.layers. maxpooling2d,如果从1迁移。X到2。X。
平均池=> tf.nn。Avg_pool2d或tf.keras.layers。如果在TF 2中使用AveragePooling2D。x和
tf. compat_v1 . dn .avg_pool_v2或tf. compat_v2 .v2. dn .avg_pool或tf. compat_v1 .keras.layers. averagepooling2d或tf. compat_v1 .keras.layers. avgpool2d或tf. compat_v2 .keras.layers. averagepooling2d或tf. compat_v2 .keras.layers. avgpool2d,如果从1迁移。X到2。X。
有关Tensorflow迁移的更多信息。X到2。请参考本迁移指南。
其他回答
我举个例子来说明:
X:输入形状[2,3]的图像,1通道 valid_pad: max pool with 2x2 kernel, stride 2和VALID padding。 same_pad: max pool with 2x2 kernel, stride 2和SAME padding(这是经典的方法)
输出形状为:
Valid_pad:这里没有填充,所以输出形状是[1,1] Same_pad:在这里,我们将图像填充到形状[2,4](使用-inf,然后应用Max pool),因此输出形状是[1,2]
x = tf.constant([[1., 2., 3.],
[4., 5., 6.]])
x = tf.reshape(x, [1, 2, 3, 1]) # give a shape accepted by tf.nn.max_pool
valid_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
same_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
valid_pad.get_shape() == [1, 1, 1, 1] # valid_pad is [5.]
same_pad.get_shape() == [1, 1, 2, 1] # same_pad is [5., 6.]
TensorFlow Convolution的例子概述了SAME和VALID的区别:
对于相同的填充,输出的高度和宽度计算如下: Out_height = ceil(float(in_height) / float(strides[1])) Out_width = ceil(float(in_width) / float(strides[2]))
And
对于VALID填充,输出高度和宽度的计算如下: Out_height = ceil(float(in_height - filter_height + 1) / float(strides[1])) Out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))
这里W和H是输入的宽和高, F为滤波器维数, P是填充大小(即要填充的行数或列数)
对于相同的填充:
对于有效填充:
我引用了官方tensorflow文档https://www.tensorflow.org/api_guides/python/nn#Convolution中的答案 对于'SAME'填充,输出高度和宽度的计算如下:
out_height = ceil(float(in_height) / float(strides[1]))
out_width = ceil(float(in_width) / float(strides[2]))
顶部和左侧的填充被计算为:
pad_along_height = max((out_height - 1) * strides[1] +
filter_height - in_height, 0)
pad_along_width = max((out_width - 1) * strides[2] +
filter_width - in_width, 0)
pad_top = pad_along_height // 2
pad_bottom = pad_along_height - pad_top
pad_left = pad_along_width // 2
pad_right = pad_along_width - pad_left
对于'VALID'填充,输出高度和宽度的计算如下:
out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))
填充值总是0。
当stride为1时(卷积比池化更典型),我们可以想到以下区别:
“SAME”:输出大小与输入大小相同。这就要求滤镜窗口要在输入贴图外滑动,因此需要垫片。 "VALID":过滤器窗口保持在输入映射中的有效位置,因此输出大小缩小为filter_size - 1。没有填充。