在tf.nn中“SAME”和“VALID”填充之间的区别是什么?tensorflow的Max_pool ?
在我看来,'VALID'意味着当我们做max pool时,边缘外不会有零填充。
根据深度学习卷积算法指南,它说池操作符中不会有填充,即只使用tensorflow的“VALID”。 但什么是'SAME'填充的最大池张量流量?
在tf.nn中“SAME”和“VALID”填充之间的区别是什么?tensorflow的Max_pool ?
在我看来,'VALID'意味着当我们做max pool时,边缘外不会有零填充。
根据深度学习卷积算法指南,它说池操作符中不会有填充,即只使用tensorflow的“VALID”。 但什么是'SAME'填充的最大池张量流量?
当前回答
Tensorflow 2.0兼容答案:上面已经提供了关于“有效”和“相同”填充的详细解释。
但是,我将在Tensorflow 2中指定不同的池化函数和它们各自的命令。X(>= 2.0),为社区的利益。
1.x中的函数:
tf.nn.max_pool
tf.keras.layers.MaxPool2D
tf中平均池值=>无。神经网络,tf.keras.layers.AveragePooling2D
2.x中的函数:
tf.nn。Max_pool如果在2中使用。如果从1迁移,则tf. compat_v1 .nn.max_pool_v2或tf. compat_v2 .nn.max_pool。X到2。X。
tf.keras.layers。MaxPool2D如果在2中使用。x和
tf. compat_v1 .keras.layers. maxpooling2d或tf. compat_v1 .keras.layers. maxpooling2d或tf. compat_v2 .keras.layers. maxpooling2d或tf. compat_v2 .keras.layers. maxpooling2d,如果从1迁移。X到2。X。
平均池=> tf.nn。Avg_pool2d或tf.keras.layers。如果在TF 2中使用AveragePooling2D。x和
tf. compat_v1 . dn .avg_pool_v2或tf. compat_v2 .v2. dn .avg_pool或tf. compat_v1 .keras.layers. averagepooling2d或tf. compat_v1 .keras.layers. avgpool2d或tf. compat_v2 .keras.layers. averagepooling2d或tf. compat_v2 .keras.layers. avgpool2d,如果从1迁移。X到2。X。
有关Tensorflow迁移的更多信息。X到2。请参考本迁移指南。
其他回答
为了补充YvesgereY的回答,我发现这个可视化非常有用:
填充'valid'是第一个数字。滤镜窗口停留在图像内部。
填充'same'是第三个数字。输出是相同的大小。
在这篇文章里找到的
可视化致谢:vdumoulin@GitHub
填充是一种增加输入数据大小的操作。在一维数据中,你只需要在数组前加上一个常数,在2-dim中,你用这些常数包围矩阵。在n-dim中,用常数包围n-dim超立方体。在大多数情况下,这个常数是零,它被称为零填充。
下面是一个应用于2-d张量的p=1的零填充的例子:
你可以为你的内核使用任意填充,但是有些填充值比其他填充值使用得更频繁:
有效的填充。最简单的情况,意味着根本没有填充。让你的数据保持原样。 相同填充有时称为半填充。之所以称为SAME,是因为对于stride=1的卷积(或池化),它应该产生与输入相同大小的输出。之所以叫HALF是因为对于一个大小为k的核 FULL填充是最大填充,它不会导致对刚刚填充的元素进行卷积。对于一个大小为k的核,这个填充值等于k - 1。
要在TF中使用任意填充,可以使用TF .pad()
当stride为1时(卷积比池化更典型),我们可以想到以下区别:
“SAME”:输出大小与输入大小相同。这就要求滤镜窗口要在输入贴图外滑动,因此需要垫片。 "VALID":过滤器窗口保持在输入映射中的有效位置,因此输出大小缩小为filter_size - 1。没有填充。
Tensorflow 2.0兼容答案:上面已经提供了关于“有效”和“相同”填充的详细解释。
但是,我将在Tensorflow 2中指定不同的池化函数和它们各自的命令。X(>= 2.0),为社区的利益。
1.x中的函数:
tf.nn.max_pool
tf.keras.layers.MaxPool2D
tf中平均池值=>无。神经网络,tf.keras.layers.AveragePooling2D
2.x中的函数:
tf.nn。Max_pool如果在2中使用。如果从1迁移,则tf. compat_v1 .nn.max_pool_v2或tf. compat_v2 .nn.max_pool。X到2。X。
tf.keras.layers。MaxPool2D如果在2中使用。x和
tf. compat_v1 .keras.layers. maxpooling2d或tf. compat_v1 .keras.layers. maxpooling2d或tf. compat_v2 .keras.layers. maxpooling2d或tf. compat_v2 .keras.layers. maxpooling2d,如果从1迁移。X到2。X。
平均池=> tf.nn。Avg_pool2d或tf.keras.layers。如果在TF 2中使用AveragePooling2D。x和
tf. compat_v1 . dn .avg_pool_v2或tf. compat_v2 .v2. dn .avg_pool或tf. compat_v1 .keras.layers. averagepooling2d或tf. compat_v1 .keras.layers. avgpool2d或tf. compat_v2 .keras.layers. averagepooling2d或tf. compat_v2 .keras.layers. avgpool2d,如果从1迁移。X到2。X。
有关Tensorflow迁移的更多信息。X到2。请参考本迁移指南。
如果你喜欢ascii艺术:
"VALID" = without padding: inputs: 1 2 3 4 5 6 7 8 9 10 11 (12 13) |________________| dropped |_________________| "SAME" = with zero padding: pad| |pad inputs: 0 |1 2 3 4 5 6 7 8 9 10 11 12 13|0 0 |________________| |_________________| |________________|
在这个例子中:
输入宽度= 13 滤镜宽度= 6 步幅= 5
注:
"VALID"只删除最右边的列(或最底部的行)。 “SAME”尝试均匀地左右填充,但如果要添加的列的数量是奇数,它会将额外的列添加到右侧,就像本例中的情况一样(垂直方向上的逻辑相同:底部可能有额外的一行零)。
编辑:
关于名字:
对于“SAME”填充,如果你使用的步幅为1,该层的输出将具有与其输入相同的空间维度。 使用“VALID”填充,就没有“编造”填充输入。该层只使用有效的输入数据。