在tf.nn中“SAME”和“VALID”填充之间的区别是什么?tensorflow的Max_pool ?

在我看来,'VALID'意味着当我们做max pool时,边缘外不会有零填充。

根据深度学习卷积算法指南,它说池操作符中不会有填充,即只使用tensorflow的“VALID”。 但什么是'SAME'填充的最大池张量流量?


当前回答

有效填充:这是零填充。希望没有混淆。

x = tf.constant([[1., 2., 3.], [4., 5., 6.],[ 7., 8., 9.], [ 7., 8., 9.]])
x = tf.reshape(x, [1, 4, 3, 1])
valid_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
print (valid_pad.get_shape()) # output-->(1, 2, 1, 1)

相同填充:首先,这有点难以理解,因为我们必须分别考虑官方文档中提到的两个条件。

假设输入为,输出为,填充为,步幅为,内核大小为(只考虑单个维度)

案例01::

案例02::

被计算为可用于填充的最小值。由于的值是已知的,可以用这个公式求出值。

让我们来做这个例子:

x = tf.constant([[1., 2., 3.], [4., 5., 6.],[ 7., 8., 9.], [ 7., 8., 9.]])
x = tf.reshape(x, [1, 4, 3, 1])
same_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
print (same_pad.get_shape()) # --> output (1, 2, 2, 1)

这里x的维数是(3,4)那么如果取水平方向(3):

若取垂直方向(4):

希望这将有助于理解实际上相同填充是如何在TF中工作的。

其他回答

如果你喜欢ascii艺术:

"VALID" = without padding: inputs: 1 2 3 4 5 6 7 8 9 10 11 (12 13) |________________| dropped |_________________| "SAME" = with zero padding: pad| |pad inputs: 0 |1 2 3 4 5 6 7 8 9 10 11 12 13|0 0 |________________| |_________________| |________________|

在这个例子中:

输入宽度= 13 滤镜宽度= 6 步幅= 5

注:

"VALID"只删除最右边的列(或最底部的行)。 “SAME”尝试均匀地左右填充,但如果要添加的列的数量是奇数,它会将额外的列添加到右侧,就像本例中的情况一样(垂直方向上的逻辑相同:底部可能有额外的一行零)。

编辑:

关于名字:

对于“SAME”填充,如果你使用的步幅为1,该层的输出将具有与其输入相同的空间维度。 使用“VALID”填充,就没有“编造”填充输入。该层只使用有效的输入数据。

我举个例子来说明:

X:输入形状[2,3]的图像,1通道 valid_pad: max pool with 2x2 kernel, stride 2和VALID padding。 same_pad: max pool with 2x2 kernel, stride 2和SAME padding(这是经典的方法)

输出形状为:

Valid_pad:这里没有填充,所以输出形状是[1,1] Same_pad:在这里,我们将图像填充到形状[2,4](使用-inf,然后应用Max pool),因此输出形状是[1,2]


x = tf.constant([[1., 2., 3.],
                 [4., 5., 6.]])

x = tf.reshape(x, [1, 2, 3, 1])  # give a shape accepted by tf.nn.max_pool

valid_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
same_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')

valid_pad.get_shape() == [1, 1, 1, 1]  # valid_pad is [5.]
same_pad.get_shape() == [1, 1, 2, 1]   # same_pad is  [5., 6.]

有效填充:这是零填充。希望没有混淆。

x = tf.constant([[1., 2., 3.], [4., 5., 6.],[ 7., 8., 9.], [ 7., 8., 9.]])
x = tf.reshape(x, [1, 4, 3, 1])
valid_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
print (valid_pad.get_shape()) # output-->(1, 2, 1, 1)

相同填充:首先,这有点难以理解,因为我们必须分别考虑官方文档中提到的两个条件。

假设输入为,输出为,填充为,步幅为,内核大小为(只考虑单个维度)

案例01::

案例02::

被计算为可用于填充的最小值。由于的值是已知的,可以用这个公式求出值。

让我们来做这个例子:

x = tf.constant([[1., 2., 3.], [4., 5., 6.],[ 7., 8., 9.], [ 7., 8., 9.]])
x = tf.reshape(x, [1, 4, 3, 1])
same_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
print (same_pad.get_shape()) # --> output (1, 2, 2, 1)

这里x的维数是(3,4)那么如果取水平方向(3):

若取垂直方向(4):

希望这将有助于理解实际上相同填充是如何在TF中工作的。

我引用了官方tensorflow文档https://www.tensorflow.org/api_guides/python/nn#Convolution中的答案 对于'SAME'填充,输出高度和宽度的计算如下:

out_height = ceil(float(in_height) / float(strides[1]))
out_width  = ceil(float(in_width) / float(strides[2]))

顶部和左侧的填充被计算为:

pad_along_height = max((out_height - 1) * strides[1] +
                    filter_height - in_height, 0)
pad_along_width = max((out_width - 1) * strides[2] +
                   filter_width - in_width, 0)
pad_top = pad_along_height // 2
pad_bottom = pad_along_height - pad_top
pad_left = pad_along_width // 2
pad_right = pad_along_width - pad_left

对于'VALID'填充,输出高度和宽度的计算如下:

out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
out_width  = ceil(float(in_width - filter_width + 1) / float(strides[2]))

填充值总是0。

有三种填充选择:有效(无填充),相同(或一半),满。你可以在这里(Theano)找到解释: http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

有效或无填充:

有效填充不涉及零填充,因此它只覆盖有效输入,不包括人工生成的零。对于内核大小为k的步幅s=1,则输出长度为((输入长度)- (k-1))。

相同或半填充:

当s=1时,相同的填充使输出的大小与输入的大小相同。如果s=1,补零的个数为(k-1)。

完全填充:

完全填充意味着内核运行整个输入,因此在结束时,内核可能只满足一个输入,其他为零。如果s=1,填充的零的数量是2(k-1)。如果s=1,则输出长度为((输入长度)+ (k-1))。

因此,填充的数量:(有效)<=(相同)<=(满)