在tf.nn中“SAME”和“VALID”填充之间的区别是什么?tensorflow的Max_pool ?
在我看来,'VALID'意味着当我们做max pool时,边缘外不会有零填充。
根据深度学习卷积算法指南,它说池操作符中不会有填充,即只使用tensorflow的“VALID”。 但什么是'SAME'填充的最大池张量流量?
在tf.nn中“SAME”和“VALID”填充之间的区别是什么?tensorflow的Max_pool ?
在我看来,'VALID'意味着当我们做max pool时,边缘外不会有零填充。
根据深度学习卷积算法指南,它说池操作符中不会有填充,即只使用tensorflow的“VALID”。 但什么是'SAME'填充的最大池张量流量?
当前回答
总之,“有效”填充意味着没有填充。卷积层的输出大小根据输入大小和内核大小而缩小。
相反,“相同”填充意味着使用填充。当stride设置为1时,卷积层的输出大小保持为输入大小,在计算卷积时在输入数据周围附加一定数量的“0-border”。
希望这个直观的描述能有所帮助。
其他回答
为了补充YvesgereY的回答,我发现这个可视化非常有用:
填充'valid'是第一个数字。滤镜窗口停留在图像内部。
填充'same'是第三个数字。输出是相同的大小。
在这篇文章里找到的
可视化致谢:vdumoulin@GitHub
填充是一种增加输入数据大小的操作。在一维数据中,你只需要在数组前加上一个常数,在2-dim中,你用这些常数包围矩阵。在n-dim中,用常数包围n-dim超立方体。在大多数情况下,这个常数是零,它被称为零填充。
下面是一个应用于2-d张量的p=1的零填充的例子:
你可以为你的内核使用任意填充,但是有些填充值比其他填充值使用得更频繁:
有效的填充。最简单的情况,意味着根本没有填充。让你的数据保持原样。 相同填充有时称为半填充。之所以称为SAME,是因为对于stride=1的卷积(或池化),它应该产生与输入相同大小的输出。之所以叫HALF是因为对于一个大小为k的核 FULL填充是最大填充,它不会导致对刚刚填充的元素进行卷积。对于一个大小为k的核,这个填充值等于k - 1。
要在TF中使用任意填充,可以使用TF .pad()
如果你喜欢ascii艺术:
"VALID" = without padding: inputs: 1 2 3 4 5 6 7 8 9 10 11 (12 13) |________________| dropped |_________________| "SAME" = with zero padding: pad| |pad inputs: 0 |1 2 3 4 5 6 7 8 9 10 11 12 13|0 0 |________________| |_________________| |________________|
在这个例子中:
输入宽度= 13 滤镜宽度= 6 步幅= 5
注:
"VALID"只删除最右边的列(或最底部的行)。 “SAME”尝试均匀地左右填充,但如果要添加的列的数量是奇数,它会将额外的列添加到右侧,就像本例中的情况一样(垂直方向上的逻辑相同:底部可能有额外的一行零)。
编辑:
关于名字:
对于“SAME”填充,如果你使用的步幅为1,该层的输出将具有与其输入相同的空间维度。 使用“VALID”填充,就没有“编造”填充输入。该层只使用有效的输入数据。
总之,“有效”填充意味着没有填充。卷积层的输出大小根据输入大小和内核大小而缩小。
相反,“相同”填充意味着使用填充。当stride设置为1时,卷积层的输出大小保持为输入大小,在计算卷积时在输入数据周围附加一定数量的“0-border”。
希望这个直观的描述能有所帮助。
有效填充:这是零填充。希望没有混淆。
x = tf.constant([[1., 2., 3.], [4., 5., 6.],[ 7., 8., 9.], [ 7., 8., 9.]])
x = tf.reshape(x, [1, 4, 3, 1])
valid_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
print (valid_pad.get_shape()) # output-->(1, 2, 1, 1)
相同填充:首先,这有点难以理解,因为我们必须分别考虑官方文档中提到的两个条件。
假设输入为,输出为,填充为,步幅为,内核大小为(只考虑单个维度)
案例01::
案例02::
被计算为可用于填充的最小值。由于的值是已知的,可以用这个公式求出值。
让我们来做这个例子:
x = tf.constant([[1., 2., 3.], [4., 5., 6.],[ 7., 8., 9.], [ 7., 8., 9.]])
x = tf.reshape(x, [1, 4, 3, 1])
same_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
print (same_pad.get_shape()) # --> output (1, 2, 2, 1)
这里x的维数是(3,4)那么如果取水平方向(3):
若取垂直方向(4):
希望这将有助于理解实际上相同填充是如何在TF中工作的。