当我在Tensorflow 2.0环境中执行命令sess = tf.Session()时,我得到了一个错误消息,如下所示:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'tensorflow' has no attribute 'Session'

系统信息:

操作系统平台及发行版本:Windows 10 Python版本:3.7.1 Tensorflow版本:2.0.0-alpha0(已安装pip)

复制步骤: 安装:

PIP安装——升级PIP PIP install tensorflow==2.0.0-alpha0 PIP安装keras PIP install numpy==1.16.2

执行:

执行命令:import tensorflow as tf 执行命令:sess = tf.Session()


当前回答

我在更新Windows 10后第一次尝试谷歌Colab时也遇到了同样的问题。然后我改了一下,插入了两行,

tf.compat.v1.disable_eager_execution () sess = tf. compatat .v1. session ()

结果,一切都很顺利

其他回答

根据TF 1:1符号映射,在TF 2.0中您应该使用TF . compatat .v1. session()而不是TF . session ()

https://docs.google.com/spreadsheets/d/1FLFJLzg7WNP6JHODX5q8BDgptKafq_slHpnHVbJIteQ/edit#gid=0

得到TF 1。在TF 2.0中可以运行类似x的行为

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

但这样就不能从TF 2.0的许多改进中获益。更多细节请参考迁移指南 https://www.tensorflow.org/guide/migrate

我在安装windows10 + python3.7(64bit) + anacconda3 + jupyter笔记本电脑后第一次尝试python时遇到了这个问题。

我通过参考“https://vispud.blogspot.com/2019/05/tensorflow200a0-attributeerror-module.html”解决了这个问题

我同意

我相信“Session()”已经在TF 2.0中被删除了。

我插入了两行。一个是tf. compat_v1 .disable_eager_execution()另一个是sess = tf. compat_v1 . session ()

我的Hello.py如下:

import tensorflow as tf

tf.compat.v1.disable_eager_execution()

hello = tf.constant('Hello, TensorFlow!')

sess = tf.compat.v1.Session()

print(sess.run(hello))

我在更新Windows 10后第一次尝试谷歌Colab时也遇到了同样的问题。然后我改了一下,插入了两行,

tf.compat.v1.disable_eager_execution () sess = tf. compatat .v1. session ()

结果,一切都很顺利

TF2在默认情况下运行Eager Execution,从而消除了对session的需求。如果你想运行静态图形,更合适的方法是在TF2中使用tf.function()。虽然在TF2中仍然可以通过tf. compatat .v1.Session()访问Session,但我不鼓励使用它。通过比较hello worlds中的差异可能有助于演示这种差异:

TF1。X你好世界:

import tensorflow as tf
msg = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(msg))

TF2。X你好世界:

import tensorflow as tf
msg = tf.constant('Hello, TensorFlow!')
tf.print(msg)

更多信息请参见Effective TensorFlow 2

TF2。X,你可以这样做。

import tensorflow as tf
with tf.compat.v1.Session() as sess:
    hello = tf.constant('hello world')
    print(sess.run(hello))

>>>你好世界