当我在Tensorflow 2.0环境中执行命令sess = tf.Session()时,我得到了一个错误消息,如下所示:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'tensorflow' has no attribute 'Session'

系统信息:

操作系统平台及发行版本:Windows 10 Python版本:3.7.1 Tensorflow版本:2.0.0-alpha0(已安装pip)

复制步骤: 安装:

PIP安装——升级PIP PIP install tensorflow==2.0.0-alpha0 PIP安装keras PIP install numpy==1.16.2

执行:

执行命令:import tensorflow as tf 执行命令:sess = tf.Session()


当前回答

Tensorflow 2。x支持的热切执行默认情况下,因此会话不支持。

其他回答

如果这是你的代码,正确的解决方案是重写它不使用Session(),因为在TensorFlow 2中不再需要Session()

如果这只是你正在运行的代码,你可以通过运行降级到TensorFlow 1

pip3 install --upgrade --force-reinstall tensorflow-gpu==1.15.0 

(或者TensorFlow 1的最新版本)

TF2在默认情况下运行Eager Execution,从而消除了对session的需求。如果你想运行静态图形,更合适的方法是在TF2中使用tf.function()。虽然在TF2中仍然可以通过tf. compatat .v1.Session()访问Session,但我不鼓励使用它。通过比较hello worlds中的差异可能有助于演示这种差异:

TF1。X你好世界:

import tensorflow as tf
msg = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(msg))

TF2。X你好世界:

import tensorflow as tf
msg = tf.constant('Hello, TensorFlow!')
tf.print(msg)

更多信息请参见Effective TensorFlow 2

使用Anaconda + Spyder (Python 3.7)

(代码)

import tensorflow as tf
valor1 = tf.constant(2)
valor2 = tf.constant(3)
type(valor1)
print(valor1)
soma=valor1+valor2
type(soma)
print(soma)
sess = tf.compat.v1.Session()
with sess:
    print(sess.run(soma))

[控制台]

import tensorflow as tf
valor1 = tf.constant(2)
valor2 = tf.constant(3)
type(valor1)
print(valor1)
soma=valor1+valor2
type(soma)
Tensor("Const_8:0", shape=(), dtype=int32)
Out[18]: tensorflow.python.framework.ops.Tensor

print(soma)
Tensor("add_4:0", shape=(), dtype=int32)

sess = tf.compat.v1.Session()

with sess:
    print(sess.run(soma))
5
import tensorflow._api.v2.compat.v1 as tf
tf.disable_v2_behavior()

用这个:

sess = tf.compat.v1.Session()

如果出现错误,请使用以下方法

tf.compat.v1.disable_eager_execution()
sess = tf.compat.v1.Session()