reddit上的一个帖子提出了一个很有趣的问题:

尾递归函数可以简单地转换为迭代函数。其他的可以通过使用显式堆栈进行转换。每个递归都能转化为迭代吗?

文章中的(counter?)例子是:

(define (num-ways x y)
  (case ((= x 0) 1)
        ((= y 0) 1)
        (num-ways2 x y) ))

(define (num-ways2 x y)
  (+ (num-ways (- x 1) y)
     (num-ways x (- y 1))

当前回答

消除递归是一个复杂的问题,在定义良好的情况下是可行的。

以下是简单的情况:

尾递归 直接线性递归

其他回答

是的,显式地使用堆栈(但恕我直言,递归读起来要舒服得多)。

看看维基百科上的以下条目,你可以把它们作为一个起点,找到你问题的完整答案。

计算机科学中的递归 递归关系

下面一段话可能会给你一些提示,让你知道从哪里开始:

求解递归关系意味着获得一个封闭形式的解:n的非递归函数。

再看看这篇文章的最后一段。

原则上,在数据结构和调用堆栈都具有无限状态的语言中,总是可以删除递归并替换为迭代。这是丘奇-图灵论文的一个基本结论。

Given an actual programming language, the answer is not as obvious. The problem is that it is quite possible to have a language where the amount of memory that can be allocated in the program is limited but where the amount of call stack that can be used is unbounded (32-bit C where the address of stack variables is not accessible). In this case, recursion is more powerful simply because it has more memory it can use; there is not enough explicitly allocatable memory to emulate the call stack. For a detailed discussion on this, see this discussion.

递归不只是在堆栈上调用相同的函数,一旦函数消亡,它就会从堆栈中删除。因此,总是可以使用显式堆栈来管理使用迭代的相同操作的调用。 所以,所有递归代码都可以转换为迭代。

是的,总是可以编写一个非递归的版本。简单的解决方案是使用堆栈数据结构并模拟递归执行。