从Udacity的深度学习课程中,y_i的softmax仅仅是指数除以整个Y向量的指数之和:

其中S(y_i)是y_i的软最大函数e是指数函数j是no。输入向量Y中的列。

我试过以下几种方法:

import numpy as np

def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()

scores = [3.0, 1.0, 0.2]
print(softmax(scores))

返回:

[ 0.8360188   0.11314284  0.05083836]

但建议的解决方案是:

def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    return np.exp(x) / np.sum(np.exp(x), axis=0)

它产生与第一个实现相同的输出,尽管第一个实现显式地取每列与Max的差值,然后除以和。

有人能用数学方法解释一下吗?一个是对的,另一个是错的?

实现在代码和时间复杂度方面是否相似?哪个更有效率?


当前回答

我想补充一点对这个问题的理解。这里减去数组的最大值是正确的。但如果你运行另一篇文章中的代码,你会发现当数组是2D或更高维度时,它不会给你正确的答案。

在这里我给你一些建议:

为了得到max,试着沿着x轴做,你会得到一个1D数组。 重塑你的最大数组原始形状。 np。Exp得到指数值。 np。沿轴求和。 得到最终结果。

根据结果,你将通过做矢量化得到正确的答案。因为和大学作业有关,所以我不能把具体的代码贴在这里,如果你不明白我可以多给你一些建议。

其他回答

下面是使用numpy的广义解,以及与tensorflow和scipy的正确性比较:

数据准备:

import numpy as np

np.random.seed(2019)

batch_size = 1
n_items = 3
n_classes = 2
logits_np = np.random.rand(batch_size,n_items,n_classes).astype(np.float32)
print('logits_np.shape', logits_np.shape)
print('logits_np:')
print(logits_np)

输出:

logits_np.shape (1, 3, 2)
logits_np:
[[[0.9034822  0.3930805 ]
  [0.62397    0.6378774 ]
  [0.88049906 0.299172  ]]]

使用tensorflow的Softmax:

import tensorflow as tf

logits_tf = tf.convert_to_tensor(logits_np, np.float32)
scores_tf = tf.nn.softmax(logits_np, axis=-1)

print('logits_tf.shape', logits_tf.shape)
print('scores_tf.shape', scores_tf.shape)

with tf.Session() as sess:
    scores_np = sess.run(scores_tf)

print('scores_np.shape', scores_np.shape)
print('scores_np:')
print(scores_np)

print('np.sum(scores_np, axis=-1).shape', np.sum(scores_np,axis=-1).shape)
print('np.sum(scores_np, axis=-1):')
print(np.sum(scores_np, axis=-1))

输出:

logits_tf.shape (1, 3, 2)
scores_tf.shape (1, 3, 2)
scores_np.shape (1, 3, 2)
scores_np:
[[[0.62490064 0.37509936]
  [0.4965232  0.5034768 ]
  [0.64137274 0.3586273 ]]]
np.sum(scores_np, axis=-1).shape (1, 3)
np.sum(scores_np, axis=-1):
[[1. 1. 1.]]

使用scipy的Softmax:

from scipy.special import softmax

scores_np = softmax(logits_np, axis=-1)

print('scores_np.shape', scores_np.shape)
print('scores_np:')
print(scores_np)

print('np.sum(scores_np, axis=-1).shape', np.sum(scores_np, axis=-1).shape)
print('np.sum(scores_np, axis=-1):')
print(np.sum(scores_np, axis=-1))

输出:

scores_np.shape (1, 3, 2)
scores_np:
[[[0.62490064 0.37509936]
  [0.4965232  0.5034768 ]
  [0.6413727  0.35862732]]]
np.sum(scores_np, axis=-1).shape (1, 3)
np.sum(scores_np, axis=-1):
[[1. 1. 1.]]

Softmax使用numpy (https://nolanbconaway.github.io/blog/2017/softmax-numpy):

def softmax(X, theta = 1.0, axis = None):
    """
    Compute the softmax of each element along an axis of X.

    Parameters
    ----------
    X: ND-Array. Probably should be floats.
    theta (optional): float parameter, used as a multiplier
        prior to exponentiation. Default = 1.0
    axis (optional): axis to compute values along. Default is the
        first non-singleton axis.

    Returns an array the same size as X. The result will sum to 1
    along the specified axis.
    """

    # make X at least 2d
    y = np.atleast_2d(X)

    # find axis
    if axis is None:
        axis = next(j[0] for j in enumerate(y.shape) if j[1] > 1)

    # multiply y against the theta parameter,
    y = y * float(theta)

    # subtract the max for numerical stability
    y = y - np.expand_dims(np.max(y, axis = axis), axis)

    # exponentiate y
    y = np.exp(y)

    # take the sum along the specified axis
    ax_sum = np.expand_dims(np.sum(y, axis = axis), axis)

    # finally: divide elementwise
    p = y / ax_sum

    # flatten if X was 1D
    if len(X.shape) == 1: p = p.flatten()

    return p


scores_np = softmax(logits_np, axis=-1)

print('scores_np.shape', scores_np.shape)
print('scores_np:')
print(scores_np)

print('np.sum(scores_np, axis=-1).shape', np.sum(scores_np, axis=-1).shape)
print('np.sum(scores_np, axis=-1):')
print(np.sum(scores_np, axis=-1))

输出:

scores_np.shape (1, 3, 2)
scores_np:
[[[0.62490064 0.37509936]
  [0.49652317 0.5034768 ]
  [0.64137274 0.3586273 ]]]
np.sum(scores_np, axis=-1).shape (1, 3)
np.sum(scores_np, axis=-1):
[[1. 1. 1.]]

softmax函数是一种激活函数,它将数字转换为和为1的概率。softmax函数输出一个向量,表示结果列表的概率分布。它也是深度学习分类任务中使用的核心元素。

当我们有多个类时,使用Softmax函数。

它对于找出有最大值的类很有用。概率。

Softmax函数理想地用于输出层,在那里我们实际上试图获得定义每个输入类的概率。

取值范围是0 ~ 1。

Softmax函数将对数[2.0,1.0,0.1]转换为概率[0.7,0.2,0.1],概率和为1。Logits是神经网络最后一层输出的原始分数。在激活发生之前。为了理解softmax函数,我们必须看看第(n-1)层的输出。

softmax函数实际上是一个arg max函数。这意味着它不会返回输入中的最大值,而是返回最大值的位置。

例如:

softmax之前

X = [13, 31, 5]

softmax后

array([1.52299795e-08, 9.99999985e-01, 5.10908895e-12]

代码:

import numpy as np

# your solution:

def your_softmax(x): 

"""Compute softmax values for each sets of scores in x.""" 

e_x = np.exp(x - np.max(x)) 

return e_x / e_x.sum() 

# correct solution: 

def softmax(x): 

"""Compute softmax values for each sets of scores in x.""" 

e_x = np.exp(x - np.max(x)) 

return e_x / e_x.sum(axis=0) 

# only difference

这将泛化并假设您正在规范化尾随维度。

def softmax(x: np.ndarray) -> np.ndarray:
    e_x = np.exp(x - np.max(x, axis=-1)[..., None])
    e_y = e_x.sum(axis=-1)[..., None]
    return e_x / e_y

在这里你可以找到为什么他们使用- max。

从这里开始:

“当你在实际中编写计算Softmax函数的代码时,由于指数的存在,中间项可能非常大。大数除法在数值上可能不稳定,所以使用标准化技巧很重要。”

为了保持数值的稳定性,应减去max(x)。下面是softmax函数的代码;

def softmax (x):

if len(x.shape) > 1:
    tmp = np.max(x, axis = 1)
    x -= tmp.reshape((x.shape[0], 1))
    x = np.exp(x)
    tmp = np.sum(x, axis = 1)
    x /= tmp.reshape((x.shape[0], 1))
else:
    tmp = np.max(x)
    x -= tmp
    x = np.exp(x)
    tmp = np.sum(x)
    x /= tmp


return x