从Udacity的深度学习课程中,y_i的softmax仅仅是指数除以整个Y向量的指数之和:

其中S(y_i)是y_i的软最大函数e是指数函数j是no。输入向量Y中的列。

我试过以下几种方法:

import numpy as np

def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()

scores = [3.0, 1.0, 0.2]
print(softmax(scores))

返回:

[ 0.8360188   0.11314284  0.05083836]

但建议的解决方案是:

def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    return np.exp(x) / np.sum(np.exp(x), axis=0)

它产生与第一个实现相同的输出,尽管第一个实现显式地取每列与Max的差值,然后除以和。

有人能用数学方法解释一下吗?一个是对的,另一个是错的?

实现在代码和时间复杂度方面是否相似?哪个更有效率?


当前回答

import tensorflow as tf
import numpy as np

def softmax(x):
    return (np.exp(x).T / np.exp(x).sum(axis=-1)).T

logits = np.array([[1, 2, 3], [3, 10, 1], [1, 2, 5], [4, 6.5, 1.2], [3, 6, 1]])

sess = tf.Session()
print(softmax(logits))
print(sess.run(tf.nn.softmax(logits)))
sess.close()

其他回答

编辑。从1.2.0版本开始,scipy包含了softmax作为一个特殊函数:

https://scipy.github.io/devdocs/generated/scipy.special.softmax.html

我写了一个在任意轴上应用softmax的函数:

def softmax(X, theta = 1.0, axis = None):
    """
    Compute the softmax of each element along an axis of X.

    Parameters
    ----------
    X: ND-Array. Probably should be floats. 
    theta (optional): float parameter, used as a multiplier
        prior to exponentiation. Default = 1.0
    axis (optional): axis to compute values along. Default is the 
        first non-singleton axis.

    Returns an array the same size as X. The result will sum to 1
    along the specified axis.
    """

    # make X at least 2d
    y = np.atleast_2d(X)

    # find axis
    if axis is None:
        axis = next(j[0] for j in enumerate(y.shape) if j[1] > 1)

    # multiply y against the theta parameter, 
    y = y * float(theta)

    # subtract the max for numerical stability
    y = y - np.expand_dims(np.max(y, axis = axis), axis)

    # exponentiate y
    y = np.exp(y)

    # take the sum along the specified axis
    ax_sum = np.expand_dims(np.sum(y, axis = axis), axis)

    # finally: divide elementwise
    p = y / ax_sum

    # flatten if X was 1D
    if len(X.shape) == 1: p = p.flatten()

    return p

正如其他用户所描述的那样,减去最大值是很好的做法。我在这里写了一篇详细的文章。

The purpose of the softmax function is to preserve the ratio of the vectors as opposed to squashing the end-points with a sigmoid as the values saturate (i.e. tend to +/- 1 (tanh) or from 0 to 1 (logistical)). This is because it preserves more information about the rate of change at the end-points and thus is more applicable to neural nets with 1-of-N Output Encoding (i.e. if we squashed the end-points it would be harder to differentiate the 1-of-N output class because we can't tell which one is the "biggest" or "smallest" because they got squished.); also it makes the total output sum to 1, and the clear winner will be closer to 1 while other numbers that are close to each other will sum to 1/p, where p is the number of output neurons with similar values.

从向量中减去最大值的目的是,当你计算e^y指数时,你可能会得到非常高的值,将浮点数夹在最大值处,导致平局,但在这个例子中不是这样。如果你减去最大值得到一个负数,那么就会出现一个大问题,然后你就会得到一个负指数,它会迅速缩小数值,改变比率,这就是在海报上的问题中发生的情况,并得到错误的答案。

Udacity提供的答案效率低得可怕。我们需要做的第一件事是计算所有向量分量的e^y_j, KEEP这些值,然后求和,然后除。Udacity搞砸的地方是他们计算了两次e^y_j !!正确答案如下:

def softmax(y):
    e_to_the_y_j = np.exp(y)
    return e_to_the_y_j / np.sum(e_to_the_y_j, axis=0)

根据所有的回复和CS231n的注释,请允许我总结如下:

def softmax(x, axis):
    x -= np.max(x, axis=axis, keepdims=True)
    return np.exp(x) / np.exp(x).sum(axis=axis, keepdims=True)

用法:

x = np.array([[1, 0, 2,-1],
              [2, 4, 6, 8], 
              [3, 2, 1, 0]])
softmax(x, axis=1).round(2)

输出:

array([[0.24, 0.09, 0.64, 0.03],
       [0.  , 0.02, 0.12, 0.86],
       [0.64, 0.24, 0.09, 0.03]])

他们都是正确的,但从数值稳定性的角度来看,你的更合适。

你从

e ^ (x - max(x)) / sum(e^(x - max(x))

利用a^(b - c) = (a^b)/(a^c)我们得到

= e ^ x / (e ^ max(x) * sum(e ^ x / e ^ max(x)))

= e ^ x / sum(e ^ x)

这就是另一个答案说的。你可以用任意变量替换max(x)它会消掉。

在上面的回答中已经回答了很多细节。Max被减去以避免溢出。我在这里添加了python3中的另一个实现。

import numpy as np
def softmax(x):
    mx = np.amax(x,axis=1,keepdims = True)
    x_exp = np.exp(x - mx)
    x_sum = np.sum(x_exp, axis = 1, keepdims = True)
    res = x_exp / x_sum
    return res

x = np.array([[3,2,4],[4,5,6]])
print(softmax(x))