从Udacity的深度学习课程中,y_i的softmax仅仅是指数除以整个Y向量的指数之和:

其中S(y_i)是y_i的软最大函数e是指数函数j是no。输入向量Y中的列。

我试过以下几种方法:

import numpy as np

def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()

scores = [3.0, 1.0, 0.2]
print(softmax(scores))

返回:

[ 0.8360188   0.11314284  0.05083836]

但建议的解决方案是:

def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    return np.exp(x) / np.sum(np.exp(x), axis=0)

它产生与第一个实现相同的输出,尽管第一个实现显式地取每列与Max的差值,然后除以和。

有人能用数学方法解释一下吗?一个是对的,另一个是错的?

实现在代码和时间复杂度方面是否相似?哪个更有效率?


当前回答

为了提供另一种解决方案,请考虑这样的情况:参数的值非常大,以至于exp(x)会溢出(在负的情况下)或溢出(在正的情况下)。这里你希望尽可能长时间地保持在对数空间中,只在你可以相信结果是良好的地方取幂。

import scipy.special as sc
import numpy as np

def softmax(x: np.ndarray) -> np.ndarray:
    return np.exp(x - sc.logsumexp(x))

其他回答

他们都是正确的,但从数值稳定性的角度来看,你的更合适。

你从

e ^ (x - max(x)) / sum(e^(x - max(x))

利用a^(b - c) = (a^b)/(a^c)我们得到

= e ^ x / (e ^ max(x) * sum(e ^ x / e ^ max(x)))

= e ^ x / sum(e ^ x)

这就是另一个答案说的。你可以用任意变量替换max(x)它会消掉。

这将泛化并假设您正在规范化尾随维度。

def softmax(x: np.ndarray) -> np.ndarray:
    e_x = np.exp(x - np.max(x, axis=-1)[..., None])
    e_y = e_x.sum(axis=-1)[..., None]
    return e_x / e_y

编辑。从1.2.0版本开始,scipy包含了softmax作为一个特殊函数:

https://scipy.github.io/devdocs/generated/scipy.special.softmax.html

我写了一个在任意轴上应用softmax的函数:

def softmax(X, theta = 1.0, axis = None):
    """
    Compute the softmax of each element along an axis of X.

    Parameters
    ----------
    X: ND-Array. Probably should be floats. 
    theta (optional): float parameter, used as a multiplier
        prior to exponentiation. Default = 1.0
    axis (optional): axis to compute values along. Default is the 
        first non-singleton axis.

    Returns an array the same size as X. The result will sum to 1
    along the specified axis.
    """

    # make X at least 2d
    y = np.atleast_2d(X)

    # find axis
    if axis is None:
        axis = next(j[0] for j in enumerate(y.shape) if j[1] > 1)

    # multiply y against the theta parameter, 
    y = y * float(theta)

    # subtract the max for numerical stability
    y = y - np.expand_dims(np.max(y, axis = axis), axis)

    # exponentiate y
    y = np.exp(y)

    # take the sum along the specified axis
    ax_sum = np.expand_dims(np.sum(y, axis = axis), axis)

    # finally: divide elementwise
    p = y / ax_sum

    # flatten if X was 1D
    if len(X.shape) == 1: p = p.flatten()

    return p

正如其他用户所描述的那样,减去最大值是很好的做法。我在这里写了一篇详细的文章。

在上面的回答中已经回答了很多细节。Max被减去以避免溢出。我在这里添加了python3中的另一个实现。

import numpy as np
def softmax(x):
    mx = np.amax(x,axis=1,keepdims = True)
    x_exp = np.exp(x - mx)
    x_sum = np.sum(x_exp, axis = 1, keepdims = True)
    res = x_exp / x_sum
    return res

x = np.array([[3,2,4],[4,5,6]])
print(softmax(x))

我想说,虽然从数学上讲,这两种方法都是正确的,但就实现而言,第一个方法更好。在计算softmax时,中间值可能会变得很大。两个大数的除法在数值上是不稳定的。这些笔记(来自斯坦福大学)提到了一个归一化技巧,这基本上就是你正在做的事情。