我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?

下面是一些示例数据:

l <- replicate(
  132,
  as.list(sample(letters, 20)),
  simplify = FALSE
)

当前回答

从不同的角度;

install.packages("smotefamily")
library(smotefamily)
library(dplyr)

data_example = sample_generator(5000,ratio = 0.80)
genData = BLSMOTE(data_example[,-3],data_example[,3])
#There are many lists in genData. If we want to convert one of them to dataframe.

sentetic=as.data.frame.array(genData$syn_data)
# as.data.frame.array seems to be working.

其他回答

扩展@Marek的回答:如果你想避免字符串变成因素和效率不是一个问题,尝试一下

do.call(rbind, lapply(your_list, data.frame, stringsAsFactors=FALSE))

根据列表的结构,有一些tidyverse选项可以很好地处理长度不等的列表:

l <- list(a = list(var.1 = 1, var.2 = 2, var.3 = 3)
        , b = list(var.1 = 4, var.2 = 5)
        , c = list(var.1 = 7, var.3 = 9)
        , d = list(var.1 = 10, var.2 = 11, var.3 = NA))

df <- dplyr::bind_rows(l)
df <- purrr::map_df(l, dplyr::bind_rows)
df <- purrr::map_df(l, ~.x)

# all create the same data frame:
# A tibble: 4 x 3
  var.1 var.2 var.3
  <dbl> <dbl> <dbl>
1     1     2     3
2     4     5    NA
3     7    NA     9
4    10    11    NA

你也可以混合向量和数据帧:

library(dplyr)
bind_rows(
  list(a = 1, b = 2),
  data_frame(a = 3:4, b = 5:6),
  c(a = 7)
)

# A tibble: 4 x 2
      a     b
  <dbl> <dbl>
1     1     2
2     3     5
3     4     6
4     7    NA

从不同的角度;

install.packages("smotefamily")
library(smotefamily)
library(dplyr)

data_example = sample_generator(5000,ratio = 0.80)
genData = BLSMOTE(data_example[,-3],data_example[,3])
#There are many lists in genData. If we want to convert one of them to dataframe.

sentetic=as.data.frame.array(genData$syn_data)
# as.data.frame.array seems to be working.

修正样本数据,使其符合原始描述“每个项目是一个长度为20的列表”

mylistlist <- replicate(
  132,
  as.list(sample(letters, 20)),
  simplify = FALSE
)

我们可以像这样把它转换成一个数据帧:

data.frame(t(sapply(mylistlist,c)))

Sapply将其转换为矩阵。 data.frame将矩阵转换为数据帧。

导致:

有时你的数据可能是相同长度的向量的列表。

lolov = list(list(c(1,2,3),c(4,5,6)), list(c(7,8,9),c(10,11,12),c(13,14,15)) )

(内部向量也可以是列表,但我简化了,使其更容易阅读)。

然后可以进行如下修改。记住,你可以一次取消一个级别:

lov = unlist(lolov, recursive = FALSE )
> lov
[[1]]
[1] 1 2 3

[[2]]
[1] 4 5 6

[[3]]
[1] 7 8 9

[[4]]
[1] 10 11 12

[[5]]
[1] 13 14 15

现在用其他答案中提到的你最喜欢的方法:

library(plyr)
>ldply(lov)
  V1 V2 V3
1  1  2  3
2  4  5  6
3  7  8  9
4 10 11 12
5 13 14 15