我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?

下面是一些示例数据:

l <- replicate(
  132,
  as.list(sample(letters, 20)),
  simplify = FALSE
)

当前回答

假设你的列表是L,

data.frame(Reduce(rbind, L))

其他回答

这是最后对我有用的方法:

do.call(“rbind”, lapply(S1, as.data.frame))

对于像从嵌套JSON中获得的3级或更多级别的深度嵌套列表的一般情况:

{
"2015": {
  "spain": {"population": 43, "GNP": 9},
  "sweden": {"population": 7, "GNP": 6}},
"2016": {
  "spain": {"population": 45, "GNP": 10},
  "sweden": {"population": 9, "GNP": 8}}
}

考虑一下melt()将嵌套列表转换为高格式的方法:

myjson <- jsonlite:fromJSON(file("test.json"))
tall <- reshape2::melt(myjson)[, c("L1", "L2", "L3", "value")]
    L1     L2         L3 value
1 2015  spain population    43
2 2015  spain        GNP     9
3 2015 sweden population     7
4 2015 sweden        GNP     6
5 2016  spain population    45
6 2016  spain        GNP    10
7 2016 sweden population     9
8 2016 sweden        GNP     8

接着是dcast(),然后再次扩大到一个整洁的数据集,其中每个变量组成一个a列,每个观察值组成一行:

wide <- reshape2::dcast(tall, L1+L2~L3) 
# left side of the formula defines the rows/observations and the 
# right side defines the variables/measurements
    L1     L2 GNP population
1 2015  spain   9         43
2 2015 sweden   6          7
3 2016  spain  10         45
4 2016 sweden   8          9

更多的答案,以及这个问题的答案中的时间: 将列表转换为数据帧的最有效方法是什么?

最快的方法,不产生一个数据框架与列表,而不是向量的列似乎是(从马丁摩根的回答):

l <- list(list(col1="a",col2=1),list(col1="b",col2=2))
f = function(x) function(i) unlist(lapply(x, `[[`, i), use.names=FALSE)
as.data.frame(Map(f(l), names(l[[1]])))

我发现的每个解决方案似乎只适用于列表中的每个对象都具有相同的长度。当列表中对象的长度不相等时,我需要将列表转换为data.frame。下面是我提出的基于R的解决方案。毫无疑问,这是非常低效的,但它似乎确实有效。

x1 <- c(2, 13)
x2 <- c(2, 4, 6, 9, 11, 13)
x3 <- c(1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13)
my.results <- list(x1, x2, x3)

# identify length of each list
my.lengths <- unlist(lapply(my.results, function (x) { length(unlist(x))}))
my.lengths
#[1]  2  6 20

# create a vector of values in all lists
my.values <- as.numeric(unlist(c(do.call(rbind, lapply(my.results, as.data.frame)))))
my.values
#[1]  2 13  2  4  6  9 11 13  1  1  2  3  3  4  5  5  6  7  7  8  9  9 10 11 11 12 13 13

my.matrix <- matrix(NA, nrow = max(my.lengths), ncol = length(my.lengths))

my.cumsum <- cumsum(my.lengths)

mm <- 1

for(i in 1:length(my.lengths)) {

     my.matrix[1:my.lengths[i],i] <- my.values[mm:my.cumsum[i]]

     mm <- my.cumsum[i]+1

}

my.df <- as.data.frame(my.matrix)
my.df
#   V1 V2 V3
#1   2  2  1
#2  13  4  1
#3  NA  6  2
#4  NA  9  3
#5  NA 11  3
#6  NA 13  4
#7  NA NA  5
#8  NA NA  5
#9  NA NA  6
#10 NA NA  7
#11 NA NA  7
#12 NA NA  8
#13 NA NA  9
#14 NA NA  9
#15 NA NA 10
#16 NA NA 11
#17 NA NA 11
#18 NA NA 12
#19 NA NA 13
#20 NA NA 13

有时你的数据可能是相同长度的向量的列表。

lolov = list(list(c(1,2,3),c(4,5,6)), list(c(7,8,9),c(10,11,12),c(13,14,15)) )

(内部向量也可以是列表,但我简化了,使其更容易阅读)。

然后可以进行如下修改。记住,你可以一次取消一个级别:

lov = unlist(lolov, recursive = FALSE )
> lov
[[1]]
[1] 1 2 3

[[2]]
[1] 4 5 6

[[3]]
[1] 7 8 9

[[4]]
[1] 10 11 12

[[5]]
[1] 13 14 15

现在用其他答案中提到的你最喜欢的方法:

library(plyr)
>ldply(lov)
  V1 V2 V3
1  1  2  3
2  4  5  6
3  7  8  9
4 10 11 12
5 13 14 15