我有一个嵌套的数据列表。它的长度是132,每一项是一个长度为20的列表。是否有一种快速的方法可以将这种结构转换为具有132行和20列数据的数据帧?

下面是一些示例数据:

l <- replicate(
  132,
  as.list(sample(letters, 20)),
  simplify = FALSE
)

当前回答

假设你的列表是L,

data.frame(Reduce(rbind, L))

其他回答

该方法使用一个tidyverse包(purrr)。

列表:

x <- as.list(mtcars)

将其转换为数据帧(更具体地说是tibble):

library(purrr)
map_df(x, ~.x)

编辑时间:2021年5月30日

这实际上可以通过dplyr中的bind_rows()函数实现。

x <- as.list(mtcars)
dplyr::bind_rows(x)

 A tibble: 32 x 11
     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
 2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
 3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
 4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
 5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
 6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
 7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
 8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
 9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
# ... with 22 more rows

用rbind

do.call(rbind.data.frame, your_list)

编辑:以前的版本返回list的data.frame而不是向量(正如@IanSudbery在评论中指出的那样)。

修正样本数据,使其符合原始描述“每个项目是一个长度为20的列表”

mylistlist <- replicate(
  132,
  as.list(sample(letters, 20)),
  simplify = FALSE
)

我们可以像这样把它转换成一个数据帧:

data.frame(t(sapply(mylistlist,c)))

Sapply将其转换为矩阵。 data.frame将矩阵转换为数据帧。

导致:

包数据。Table中有rbindlist函数,它是do的一个超快速实现。调用(rbind列表(…))。

它可以接受一个列表的列表,data。frame或data。表作为输入。

library(data.table)
ll <- list(a = list(var.1 = 1, var.2 = 2, var.3 = 3)
  , b = list(var.1 = 4, var.2 = 5, var.3 = 6)
  , c = list(var.1 = 7, var.2 = 8, var.3 = 9)
  , d = list(var.1 = 10, var.2 = 11, var.3 = 12)
  )

DT <- rbindlist(ll)

这会返回一个数据。表继承自data.frame。

如果你真的想转换回data。frame使用as。data。frame(DT)

这是最后对我有用的方法:

do.call(“rbind”, lapply(S1, as.data.frame))