我有两个熊猫数据帧,它们有一些相同的行。
假设dataframe2是dataframe1的子集。
我怎么能得到dataframe1的行不在dataframe2?
df1 = pandas.DataFrame(data = {'col1' : [1, 2, 3, 4, 5], 'col2' : [10, 11, 12, 13, 14]})
df2 = pandas.DataFrame(data = {'col1' : [1, 2, 3], 'col2' : [10, 11, 12]})
df1
col1 col2
0 1 10
1 2 11
2 3 12
3 4 13
4 5 14
df2
col1 col2
0 1 10
1 2 11
2 3 12
预期结果:
col1 col2
3 4 13
4 5 14
我这样做的方法包括添加一个新的列,该列对一个数据框架是唯一的,并使用它来选择是否保留一个条目
df2[col3] = 1
df1 = pd.merge(df_1, df_2, on=['field_x', 'field_y'], how = 'outer')
df1['Empt'].fillna(0, inplace=True)
这使得df1中的每个条目都有一个代码-如果它对df1是唯一的,则为0,如果它在两个数据框架中都是1。然后使用它来限制您想要的内容
answer = nonuni[nonuni['Empt'] == 0]
这是最好的方法:
df = df1.drop_duplicates().merge(df2.drop_duplicates(), on=df2.columns.to_list(),
how='left', indicator=True)
df.loc[df._merge=='left_only',df.columns!='_merge']
注意,drop duplicate用于最小化比较。没有他们也可以。最好的方法是比较行内容本身,而不是索引或一/两列,同样的代码也可以用于其他过滤器,如'both'和'right_only',以达到类似的结果。对于这种语法,数据帧可以有任意数量的列,甚至可以有不同的索引。只有列应该出现在两个数据框架中。
为什么这是最好的方法?
索引。差异只适用于基于唯一索引的比较
Pandas.concat()与drop_duplication()结合使用并不理想,因为它还会删除可能只存在于你想保留的数据帧中的行,并出于合理的原因进行复制。
我这样做的方法包括添加一个新的列,该列对一个数据框架是唯一的,并使用它来选择是否保留一个条目
df2[col3] = 1
df1 = pd.merge(df_1, df_2, on=['field_x', 'field_y'], how = 'outer')
df1['Empt'].fillna(0, inplace=True)
这使得df1中的每个条目都有一个代码-如果它对df1是唯一的,则为0,如果它在两个数据框架中都是1。然后使用它来限制您想要的内容
answer = nonuni[nonuni['Empt'] == 0]
我认为那些包含合并的答案是极其缓慢的。因此,我建议另一种方法来获得两个数据框架之间不同的行:
df1 = pandas.DataFrame(data = {'col1' : [1, 2, 3, 4, 5], 'col2' : [10, 11, 12, 13, 14]})
df2 = pandas.DataFrame(data = {'col1' : [1, 2, 3], 'col2' : [10, 11, 12]})
免责声明:如果您对两个数据框架不同的特定列感兴趣,那么我的解决方案是有效的。如果您只对那些所有列都相等的行感兴趣,则不要使用这种方法。
比方说,col1是一种ID,你只想获取那些不包含在两个数据框架中的行:
ids_in_df2 = df2.col1.unique()
not_found_ids = df[~df['col1'].isin(ids_in_df2 )]
就是这样。你得到的数据框架只包含那些col1在两个数据框架中都不明显的行。