我有两个熊猫数据帧,它们有一些相同的行。
假设dataframe2是dataframe1的子集。
我怎么能得到dataframe1的行不在dataframe2?
df1 = pandas.DataFrame(data = {'col1' : [1, 2, 3, 4, 5], 'col2' : [10, 11, 12, 13, 14]})
df2 = pandas.DataFrame(data = {'col1' : [1, 2, 3], 'col2' : [10, 11, 12]})
df1
col1 col2
0 1 10
1 2 11
2 3 12
3 4 13
4 5 14
df2
col1 col2
0 1 10
1 2 11
2 3 12
预期结果:
col1 col2
3 4 13
4 5 14
假设你有两个数据框架,df_1和df_2有多个字段(column_names),你想在df_1中找到那些不在df_2中的条目。Fields_x, fields_y),执行以下步骤。
步骤1。将列key1和key2分别添加到df_1和df_2中。
步骤2。合并数据帧,如下所示。Field_x和field_y是我们想要的列。
步骤3。只选择df_1中key1不等于key2的行。
第四。删除key1和key2。
这种方法将解决你的问题,即使有大数据集也能快速工作。我已经尝试了超过1,000,000行的数据框架。
df_1['key1'] = 1
df_2['key2'] = 1
df_1 = pd.merge(df_1, df_2, on=['field_x', 'field_y'], how = 'left')
df_1 = df_1[~(df_1.key2 == df_1.key1)]
df_1 = df_1.drop(['key1','key2'], axis=1)
这个怎么样:
df1 = pandas.DataFrame(data = {'col1' : [1, 2, 3, 4, 5],
'col2' : [10, 11, 12, 13, 14]})
df2 = pandas.DataFrame(data = {'col1' : [1, 2, 3],
'col2' : [10, 11, 12]})
records_df2 = set([tuple(row) for row in df2.values])
in_df2_mask = np.array([tuple(row) in records_df2 for row in df1.values])
result = df1[~in_df2_mask]
这是最好的方法:
df = df1.drop_duplicates().merge(df2.drop_duplicates(), on=df2.columns.to_list(),
how='left', indicator=True)
df.loc[df._merge=='left_only',df.columns!='_merge']
注意,drop duplicate用于最小化比较。没有他们也可以。最好的方法是比较行内容本身,而不是索引或一/两列,同样的代码也可以用于其他过滤器,如'both'和'right_only',以达到类似的结果。对于这种语法,数据帧可以有任意数量的列,甚至可以有不同的索引。只有列应该出现在两个数据框架中。
为什么这是最好的方法?
索引。差异只适用于基于唯一索引的比较
Pandas.concat()与drop_duplication()结合使用并不理想,因为它还会删除可能只存在于你想保留的数据帧中的行,并出于合理的原因进行复制。
如前所述,isin要求列和索引必须相同才能进行匹配。如果match只适用于行内容,一种获取掩码的方法是将行转换为(Multi)Index:
In [77]: df1 = pandas.DataFrame(data = {'col1' : [1, 2, 3, 4, 5, 3], 'col2' : [10, 11, 12, 13, 14, 10]})
In [78]: df2 = pandas.DataFrame(data = {'col1' : [1, 3, 4], 'col2' : [10, 12, 13]})
In [79]: df1.loc[~df1.set_index(list(df1.columns)).index.isin(df2.set_index(list(df2.columns)).index)]
Out[79]:
col1 col2
1 2 11
4 5 14
5 3 10
如果需要考虑索引,set_index有关键字参数append来将列追加到现有索引。如果列没有对齐,list(df.columns)可以替换为列规范以对齐数据。
pandas.MultiIndex.from_tuples(df<N>.to_records(index = False).tolist())
也可以用来创建指数,但我怀疑这是否更有效。