我正在寻找最快的方法来获得π的值,作为一个个人挑战。更具体地说,我使用的方法不涉及使用#define常量M_PI,或硬编码的数字。

下面的程序测试了我所知道的各种方法。从理论上讲,内联汇编版本是最快的选择,尽管显然不能移植。我将它作为一个基准,与其他版本进行比较。在我的测试中,使用内置函数,4 * atan(1)版本在GCC 4.2上是最快的,因为它自动将atan(1)折叠成一个常量。通过指定-fno-builtin, atan2(0, -1)版本是最快的。

下面是主要的测试程序(pitimes.c):

#include <math.h>
#include <stdio.h>
#include <time.h>

#define ITERS 10000000
#define TESTWITH(x) {                                                       \
    diff = 0.0;                                                             \
    time1 = clock();                                                        \
    for (i = 0; i < ITERS; ++i)                                             \
        diff += (x) - M_PI;                                                 \
    time2 = clock();                                                        \
    printf("%s\t=> %e, time => %f\n", #x, diff, diffclock(time2, time1));   \
}

static inline double
diffclock(clock_t time1, clock_t time0)
{
    return (double) (time1 - time0) / CLOCKS_PER_SEC;
}

int
main()
{
    int i;
    clock_t time1, time2;
    double diff;

    /* Warmup. The atan2 case catches GCC's atan folding (which would
     * optimise the ``4 * atan(1) - M_PI'' to a no-op), if -fno-builtin
     * is not used. */
    TESTWITH(4 * atan(1))
    TESTWITH(4 * atan2(1, 1))

#if defined(__GNUC__) && (defined(__i386__) || defined(__amd64__))
    extern double fldpi();
    TESTWITH(fldpi())
#endif

    /* Actual tests start here. */
    TESTWITH(atan2(0, -1))
    TESTWITH(acos(-1))
    TESTWITH(2 * asin(1))
    TESTWITH(4 * atan2(1, 1))
    TESTWITH(4 * atan(1))

    return 0;
}

内联汇编的东西(fldpi.c)只适用于x86和x64系统:

double
fldpi()
{
    double pi;
    asm("fldpi" : "=t" (pi));
    return pi;
}

和一个构建脚本,构建我正在测试的所有配置(build.sh):

#!/bin/sh
gcc -O3 -Wall -c           -m32 -o fldpi-32.o fldpi.c
gcc -O3 -Wall -c           -m64 -o fldpi-64.o fldpi.c

gcc -O3 -Wall -ffast-math  -m32 -o pitimes1-32 pitimes.c fldpi-32.o
gcc -O3 -Wall              -m32 -o pitimes2-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -fno-builtin -m32 -o pitimes3-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -ffast-math  -m64 -o pitimes1-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall              -m64 -o pitimes2-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -fno-builtin -m64 -o pitimes3-64 pitimes.c fldpi-64.o -lm

除了在各种编译器标志之间进行测试(我也比较了32位和64位,因为优化是不同的),我还尝试切换测试的顺序。但是,atan2(0, -1)版本在每次测试中仍然名列前茅。


当前回答

如果你说的最快是指最快地输入代码,下面是golfscript的解决方案:

;''6666,-2%{2+.2/@*\/10.3??2*+}*`1000<~\;

其他回答

更好的方法

要获得标准常数(如pi)或标准概念的输出,我们应该首先使用所使用语言中可用的内置方法。它将以最快和最好的方式返回一个值。我正在使用python以最快的方式运行,以获得圆周率的值。

数学库的PI变量。数学库将变量pi存储为常数。

math_pi.py

import math
print math.pi

使用linux /usr/bin/time -v python math_pi.py的time工具运行脚本

输出:

Command being timed: "python math_pi.py"
User time (seconds): 0.01
System time (seconds): 0.01
Percent of CPU this job got: 91%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.03

用arccos的数学方法

acos_pi.py

import math
print math.acos(-1)

使用linux /usr/bin/time -v python acos_pi.py的time工具运行脚本

输出:

Command being timed: "python acos_pi.py"
User time (seconds): 0.02
System time (seconds): 0.01
Percent of CPU this job got: 94%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.03

使用BBP公式

bbp_pi.py

from decimal import Decimal, getcontext
getcontext().prec=100
print sum(1/Decimal(16)**k * 
          (Decimal(4)/(8*k+1) - 
           Decimal(2)/(8*k+4) - 
           Decimal(1)/(8*k+5) -
           Decimal(1)/(8*k+6)) for k in range(100))

使用linux /usr/bin/time -v python bbp_pi.py的time工具运行脚本

输出:

Command being timed: "python c.py"
User time (seconds): 0.05
System time (seconds): 0.01
Percent of CPU this job got: 98%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.06

因此,最好的方法是使用语言提供的内置方法,因为它们是获得输出的最快和最好的方法。在python中使用math.pi

使用machine -like公式

176 * arctan (1/57) + 28 * arctan (1/239) - 48 * arctan (1/682) + 96 * arctan(1/12943) 

[; \left( 176 \arctan \frac{1}{57} + 28 \arctan \frac{1}{239} - 48 \arctan \frac{1}{682} + 96 \arctan \frac{1}{12943}\right) ;], for you TeX the World people.

在Scheme中实现,例如:

(+ (- (+ (* 176 (atan(第57 / 1)))(* (atan (28 / 1 239))) (* 48 (atan (1 / 682))) (* 96 (12943 atan (/ 1))))

Chudnovsky算法非常快如果你不介意做一个平方根和几个逆运算的话。它在2次迭代中收敛到两倍精度。

/*
    Chudnovsky algorithm for computing PI
*/

#include <iostream>
#include <cmath>
using namespace std;

double calc_PI(int K=2) {

    static const int A = 545140134;
    static const int B = 13591409;
    static const int D = 640320;

    const double ID3 = 1./ (double(D)*double(D)*double(D));

    double sum = 0.;
    double b   = sqrt(ID3);
    long long int p = 1;
    long long int a = B;

    sum += double(p) * double(a)* b;

    // 2 iterations enough for double convergence
    for (int k=1; k<K; ++k) {
        // A*k + B
        a += A;
        // update denominator
        b *= ID3;
        // p = (-1)^k 6k! / 3k! k!^3
        p *= (6*k)*(6*k-1)*(6*k-2)*(6*k-3)*(6*k-4)*(6*k-5);
        p /= (3*k)*(3*k-1)*(3*k-2) * k*k*k;
        p = -p;

        sum += double(p) * double(a)* b;
    }

    return 1./(12*sum);
}

int main() {

    cout.precision(16);
    cout.setf(ios::fixed);

    for (int k=1; k<=5; ++k) cout << "k = " << k << "   PI = " << calc_PI(k) << endl;

    return 0;
}

结果:

k = 1   PI = 3.1415926535897341
k = 2   PI = 3.1415926535897931
k = 3   PI = 3.1415926535897931
k = 4   PI = 3.1415926535897931
k = 5   PI = 3.1415926535897931

在编译时用D计算PI。

(摘自DSource.org)

/** Calculate pi at compile time
 *
 * Compile with dmd -c pi.d
 */
module calcpi;

import meta.math;
import meta.conv;

/** real evaluateSeries!(real x, real metafunction!(real y, int n) term)
 *
 * Evaluate a power series at compile time.
 *
 * Given a metafunction of the form
 *  real term!(real y, int n),
 * which gives the nth term of a convergent series at the point y
 * (where the first term is n==1), and a real number x,
 * this metafunction calculates the infinite sum at the point x
 * by adding terms until the sum doesn't change any more.
 */
template evaluateSeries(real x, alias term, int n=1, real sumsofar=0.0)
{
  static if (n>1 && sumsofar == sumsofar + term!(x, n+1)) {
     const real evaluateSeries = sumsofar;
  } else {
     const real evaluateSeries = evaluateSeries!(x, term, n+1, sumsofar + term!(x, n));
  }
}

/*** Calculate atan(x) at compile time.
 *
 * Uses the Maclaurin formula
 *  atan(z) = z - z^3/3 + Z^5/5 - Z^7/7 + ...
 */
template atan(real z)
{
    const real atan = evaluateSeries!(z, atanTerm);
}

template atanTerm(real x, int n)
{
    const real atanTerm =  (n & 1 ? 1 : -1) * pow!(x, 2*n-1)/(2*n-1);
}

/// Machin's formula for pi
/// pi/4 = 4 atan(1/5) - atan(1/239).
pragma(msg, "PI = " ~ fcvt!(4.0 * (4*atan!(1/5.0) - atan!(1/239.0))) );

实际上,有一本书专门介绍了π的快速计算方法:Jonathan和Peter Borwein写的《π和AGM》(在亚马逊上可以买到)。

我对年度股东大会和相关算法进行了相当多的研究:这非常有趣(尽管有时并非微不足道)。

请注意,要实现大多数现代算法来计算\pi,您将需要一个多精度算术库(GMP是一个很好的选择,尽管距离我上次使用它已经有一段时间了)。

最佳算法的时间复杂度为O(M(n)log(n)),其中M(n)是使用基于fft算法对两个n位整数(M(n)=O(n log(n) log(log(n)))相乘的时间复杂度,通常在计算\pi数字时需要fft算法,GMP中实现了该算法。

请注意,即使算法背后的数学可能并不简单,算法本身通常是几行伪代码,它们的实现通常非常简单(如果您选择不编写自己的多精度算术:-))。