我有一个以NBins为参数的函数。我想用标量50或数组[0,10,20,30]调用这个函数。如何在函数中识别NBins的长度?或者换一种说法,它是标量还是向量?

我试了一下:

>>> N=[2,3,5]
>>> P = 5
>>> len(N)
3
>>> len(P)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: object of type 'int' has no len()
>>> 

如你所见,我不能将len应用于P,因为它不是一个数组....python中有isarray或isscalar之类的东西吗?

谢谢


当前回答

虽然@jamylak的方法更好,但这里有另一种方法

>>> N=[2,3,5]
>>> P = 5
>>> type(P) in (tuple, list)
False
>>> type(N) in (tuple, list)
True

其他回答

>>> import collections.abc
>>> isinstance([0, 10, 20, 30], collections.abc.Sequence)
True
>>> isinstance(50, collections.abc.Sequence)
False

注意:isinstance也支持类元组,检查类型(x)在(…)是应该避免的,也是不必要的。

你也可以检查not isinstance(x, (str, unicode))

正如@2080所指出的,这对numpy数组无效。如。

>>> import collections.abc
>>> import numpy as np
>>> isinstance((1, 2, 3), collections.abc.Sequence)
True
>>> isinstance(np.array([1, 2, 3]), collections.abc.Sequence)
False

在这种情况下,您可以尝试来自@jpaddison3的答案:

>>> hasattr(np.array([1, 2, 3]), "__len__")
True
>>> hasattr([1, 2, 3], "__len__")
True
>>> hasattr((1, 2, 3), "__len__")
True

然而,正如这里所指出的,这也不是完美的,并且会错误地(至少在我看来)将字典分类为序列,而isinstance with collections.abc.Sequence则正确地分类:

>>> hasattr({"a": 1}, "__len__")
True
>>> from numpy.distutils.misc_util import is_sequence
>>> is_sequence({"a": 1})
True
>>> isinstance({"a": 1}, collections.abc.Sequence)
False

你可以这样定制你的解决方案,根据你的需要给isinstance添加更多类型:

>>> isinstance(np.array([1, 2, 3]), (collections.abc.Sequence, np.ndarray))
True
>>> isinstance([1, 2, 3], (collections.abc.Sequence, np.ndarray))
True

你可以检查变量的数据类型。

N = [2,3,5]
P = 5
type(P)

它会给你P的数据类型。

<type 'int'>

这样你就可以区分它是整数还是数组。

Preds_test[0]的形状(128,128,1) 让我们使用isinstance()函数检查它的数据类型 Isinstance接受2个参数。 第一个参数是数据 第二个参数是数据类型 isinstance(preds_test[0], np.ndarray)输出为True。这意味着preds_test[0]是一个数组。

这是我发现的最好的方法:检查__len__和__getitem__是否存在。

你可能会问为什么?原因包括:

流行的方法isinstance(obj, abc.Sequence)在一些对象(包括PyTorch的Tensor)上失败,因为它们没有实现__contains__。 不幸的是,Python的集合中什么都没有。abc,只检查__len__和__getitem__,我觉得这是数组类对象的最小方法。 它适用于列表,元组,ndarray,张量等。

废话不多说:

def is_array_like(obj, string_is_array=False, tuple_is_array=True):
    result = hasattr(obj, "__len__") and hasattr(obj, '__getitem__') 
    if result and not string_is_array and isinstance(obj, (str, abc.ByteString)):
        result = False
    if result and not tuple_is_array and isinstance(obj, tuple):
        result = False
    return result

请注意,我添加了默认参数,因为大多数时候您可能希望将字符串视为值,而不是数组。元组也是如此。

虽然@jamylak的方法更好,但这里有另一种方法

>>> N=[2,3,5]
>>> P = 5
>>> type(P) in (tuple, list)
False
>>> type(N) in (tuple, list)
True