我有一个以NBins为参数的函数。我想用标量50或数组[0,10,20,30]调用这个函数。如何在函数中识别NBins的长度?或者换一种说法,它是标量还是向量?
我试了一下:
>>> N=[2,3,5]
>>> P = 5
>>> len(N)
3
>>> len(P)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: object of type 'int' has no len()
>>>
如你所见,我不能将len应用于P,因为它不是一个数组....python中有isarray或isscalar之类的东西吗?
谢谢
将@jamylak和@jpaddison3的答案结合在一起,如果需要健壮地将numpy数组作为输入,并以与列表相同的方式处理它们,则应该使用
import numpy as np
isinstance(P, (list, tuple, np.ndarray))
这对于list, tuple和numpy数组的子类是健壮的。
如果您想对sequence的所有其他子类(不仅仅是list和tuple)也具有健壮性,请使用
import collections
import numpy as np
isinstance(P, (collections.Sequence, np.ndarray))
为什么要用isinstance这样做,而不比较type(P)和目标值?下面是一个例子,在这里我们创建并研究NewList的行为,它是list的一个普通子类。
>>> class NewList(list):
... isThisAList = '???'
...
>>> x = NewList([0,1])
>>> y = list([0,1])
>>> print x
[0, 1]
>>> print y
[0, 1]
>>> x==y
True
>>> type(x)
<class '__main__.NewList'>
>>> type(x) is list
False
>>> type(y) is list
True
>>> type(x).__name__
'NewList'
>>> isinstance(x, list)
True
尽管x和y比较为相等,但按类型处理它们会导致不同的行为。然而,由于x是list的一个子类的实例,使用isinstance(x,list)可以给出所需的行为,并以相同的方式对待x和y。
我很惊讶,这样一个基本的问题在python中似乎没有一个直接的答案。
在我看来,几乎所有提出的答案都使用了某种类型
检查,在python中通常不建议这样做,它们似乎仅限于特定的情况(它们失败于不同的数值类型或非元组或列表的泛型可迭代对象)。
对我来说,更好的方法是导入numpy并使用array。尺寸,例如:
>>> a=1
>>> np.array(a)
Out[1]: array(1)
>>> np.array(a).size
Out[2]: 1
>>> np.array([1,2]).size
Out[3]: 2
>>> np.array('125')
Out[4]: 1
还请注意:
>>> len(np.array([1,2]))
Out[5]: 2
but:
>>> len(np.array(a))
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-40-f5055b93f729> in <module>()
----> 1 len(np.array(a))
TypeError: len() of unsized object