我有一个以NBins为参数的函数。我想用标量50或数组[0,10,20,30]调用这个函数。如何在函数中识别NBins的长度?或者换一种说法,它是标量还是向量?

我试了一下:

>>> N=[2,3,5]
>>> P = 5
>>> len(N)
3
>>> len(P)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: object of type 'int' has no len()
>>> 

如你所见,我不能将len应用于P,因为它不是一个数组....python中有isarray或isscalar之类的东西吗?

谢谢


当前回答

另一种替代方法(使用类名属性):

N = [2,3,5]
P = 5

type(N).__name__ == 'list'
True

type(P).__name__ == 'int'
True

type(N).__name__ in ('list', 'tuple')
True

不需要进口任何东西。

其他回答

>>> import collections.abc
>>> isinstance([0, 10, 20, 30], collections.abc.Sequence)
True
>>> isinstance(50, collections.abc.Sequence)
False

注意:isinstance也支持类元组,检查类型(x)在(…)是应该避免的,也是不必要的。

你也可以检查not isinstance(x, (str, unicode))

正如@2080所指出的,这对numpy数组无效。如。

>>> import collections.abc
>>> import numpy as np
>>> isinstance((1, 2, 3), collections.abc.Sequence)
True
>>> isinstance(np.array([1, 2, 3]), collections.abc.Sequence)
False

在这种情况下,您可以尝试来自@jpaddison3的答案:

>>> hasattr(np.array([1, 2, 3]), "__len__")
True
>>> hasattr([1, 2, 3], "__len__")
True
>>> hasattr((1, 2, 3), "__len__")
True

然而,正如这里所指出的,这也不是完美的,并且会错误地(至少在我看来)将字典分类为序列,而isinstance with collections.abc.Sequence则正确地分类:

>>> hasattr({"a": 1}, "__len__")
True
>>> from numpy.distutils.misc_util import is_sequence
>>> is_sequence({"a": 1})
True
>>> isinstance({"a": 1}, collections.abc.Sequence)
False

你可以这样定制你的解决方案,根据你的需要给isinstance添加更多类型:

>>> isinstance(np.array([1, 2, 3]), (collections.abc.Sequence, np.ndarray))
True
>>> isinstance([1, 2, 3], (collections.abc.Sequence, np.ndarray))
True
>>> N=[2,3,5]
>>> P = 5
>>> type(P)==type(0)
True
>>> type([1,2])==type(N)
True
>>> type(P)==type([1,2])
False

将@jamylak和@jpaddison3的答案结合在一起,如果需要健壮地将numpy数组作为输入,并以与列表相同的方式处理它们,则应该使用

import numpy as np
isinstance(P, (list, tuple, np.ndarray))

这对于list, tuple和numpy数组的子类是健壮的。

如果您想对sequence的所有其他子类(不仅仅是list和tuple)也具有健壮性,请使用

import collections
import numpy as np
isinstance(P, (collections.Sequence, np.ndarray))

为什么要用isinstance这样做,而不比较type(P)和目标值?下面是一个例子,在这里我们创建并研究NewList的行为,它是list的一个普通子类。

>>> class NewList(list):
...     isThisAList = '???'
... 
>>> x = NewList([0,1])
>>> y = list([0,1])
>>> print x
[0, 1]
>>> print y
[0, 1]
>>> x==y
True
>>> type(x)
<class '__main__.NewList'>
>>> type(x) is list
False
>>> type(y) is list
True
>>> type(x).__name__
'NewList'
>>> isinstance(x, list)
True

尽管x和y比较为相等,但按类型处理它们会导致不同的行为。然而,由于x是list的一个子类的实例,使用isinstance(x,list)可以给出所需的行为,并以相同的方式对待x和y。

另一种替代方法(使用类名属性):

N = [2,3,5]
P = 5

type(N).__name__ == 'list'
True

type(P).__name__ == 'int'
True

type(N).__name__ in ('list', 'tuple')
True

不需要进口任何东西。

前面的回答假设数组是python标准列表。作为一个经常使用numpy的人,我推荐一个非常python化的测试:

if hasattr(N, "__len__")