Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
最近,我为PyCharm创建了一个插件,使用该插件,您可以在PyCharm编辑器中轻松分析和可视化line_profiler的结果。
linepfiler在其他答案中也提到过,它是一个很好的工具,可以准确分析python解释器在某些行中花费了多少时间。
我创建的PyCharm插件可以在这里找到:https://plugins.jetbrains.com/plugin/16536-line-profiler
它需要一个python环境中的助手包,名为line profiler pycharm,可以使用pip或插件本身安装。
在PyCharm中安装插件后:
用line_profiler_pycharm.profile装饰器装饰您想要评测的任何函数使用“轮廓线”跑步器跑步
结果截图:
其他回答
我最近创建了金枪鱼,用于可视化Python运行时和导入配置文件;这在这里可能会有所帮助。
使用安装
pip install tuna
创建运行时配置文件
python3 -m cProfile -o program.prof yourfile.py
或导入配置文件(需要Python 3.7+)
python3 -X importprofile yourfile.py 2> import.log
那就把金枪鱼放在档案里
tuna program.prof
还有一个叫做statprof的统计分析器。它是一个采样分析器,因此它为代码增加了最小的开销,并提供了基于行的(而不仅仅是基于函数的)计时。它更适合于游戏等软实时应用,但精度可能低于cProfile。
pypi中的版本有点旧,因此可以通过指定git存储库来使用pip安装:
pip install git+git://github.com/bos/statprof.py@1a33eba91899afe17a8b752c6dfdec6f05dd0c01
您可以这样运行:
import statprof
with statprof.profile():
my_questionable_function()
另请参见https://stackoverflow.com/a/10333592/320036
我的方法是使用雅皮语(https://github.com/sumerc/yappi). 它与RPC服务器结合使用特别有用,在RPC服务器中(甚至只是为了调试),您可以注册方法来启动、停止和打印配置信息,例如,通过以下方式:
@staticmethod
def startProfiler():
yappi.start()
@staticmethod
def stopProfiler():
yappi.stop()
@staticmethod
def printProfiler():
stats = yappi.get_stats(yappi.SORTTYPE_TTOT, yappi.SORTORDER_DESC, 20)
statPrint = '\n'
namesArr = [len(str(stat[0])) for stat in stats.func_stats]
log.debug("namesArr %s", str(namesArr))
maxNameLen = max(namesArr)
log.debug("maxNameLen: %s", maxNameLen)
for stat in stats.func_stats:
nameAppendSpaces = [' ' for i in range(maxNameLen - len(stat[0]))]
log.debug('nameAppendSpaces: %s', nameAppendSpaces)
blankSpace = ''
for space in nameAppendSpaces:
blankSpace += space
log.debug("adding spaces: %s", len(nameAppendSpaces))
statPrint = statPrint + str(stat[0]) + blankSpace + " " + str(stat[1]).ljust(8) + "\t" + str(
round(stat[2], 2)).ljust(8 - len(str(stat[2]))) + "\t" + str(round(stat[3], 2)) + "\n"
log.log(1000, "\nname" + ''.ljust(maxNameLen - 4) + " ncall \tttot \ttsub")
log.log(1000, statPrint)
然后,当您的程序工作时,您可以通过调用startProfiler RPC方法随时启动探查器,并通过调用printProfiler(或修改RPC方法将其返回给调用者)将探查信息转储到日志文件中,并获得这样的输出:
2014-02-19 16:32:24,128-|SVR-MAIN |-(Thread-3 )-Level 1000:
name ncall ttot tsub
2014-02-19 16:32:24,128-|SVR-MAIN |-(Thread-3 )-Level 1000:
C:\Python27\lib\sched.py.run:80 22 0.11 0.05
M:\02_documents\_repos\09_aheadRepos\apps\ahdModbusSrv\pyAheadRpcSrv\xmlRpc.py.iterFnc:293 22 0.11 0.0
M:\02_documents\_repos\09_aheadRepos\apps\ahdModbusSrv\serverMain.py.makeIteration:515 22 0.11 0.0
M:\02_documents\_repos\09_aheadRepos\apps\ahdModbusSrv\pyAheadRpcSrv\PicklingXMLRPC.py._dispatch:66 1 0.0 0.0
C:\Python27\lib\BaseHTTPServer.py.date_time_string:464 1 0.0 0.0
c:\users\zasiec~1\appdata\local\temp\easy_install-hwcsr1\psutil-1.1.2-py2.7-win32.egg.tmp\psutil\_psmswindows.py._get_raw_meminfo:243 4 0.0 0.0
C:\Python27\lib\SimpleXMLRPCServer.py.decode_request_content:537 1 0.0 0.0
c:\users\zasiec~1\appdata\local\temp\easy_install-hwcsr1\psutil-1.1.2-py2.7-win32.egg.tmp\psutil\_psmswindows.py.get_system_cpu_times:148 4 0.0 0.0
<string>.__new__:8 220 0.0 0.0
C:\Python27\lib\socket.py.close:276 4 0.0 0.0
C:\Python27\lib\threading.py.__init__:558 1 0.0 0.0
<string>.__new__:8 4 0.0 0.0
C:\Python27\lib\threading.py.notify:372 1 0.0 0.0
C:\Python27\lib\rfc822.py.getheader:285 4 0.0 0.0
C:\Python27\lib\BaseHTTPServer.py.handle_one_request:301 1 0.0 0.0
C:\Python27\lib\xmlrpclib.py.end:816 3 0.0 0.0
C:\Python27\lib\SimpleXMLRPCServer.py.do_POST:467 1 0.0 0.0
C:\Python27\lib\SimpleXMLRPCServer.py.is_rpc_path_valid:460 1 0.0 0.0
C:\Python27\lib\SocketServer.py.close_request:475 1 0.0 0.0
c:\users\zasiec~1\appdata\local\temp\easy_install-hwcsr1\psutil-1.1.2-py2.7-win32.egg.tmp\psutil\__init__.py.cpu_times:1066 4 0.0 0.0
它可能对短脚本不太有用,但有助于优化服务器类型的进程,特别是考虑到printProfiler方法可以随时间多次调用,以分析和比较例如不同的程序使用场景。
在较新版本的yappi中,以下代码将起作用:
@staticmethod
def printProfile():
yappi.get_func_stats().print_all()
最近,我为PyCharm创建了一个插件,使用该插件,您可以在PyCharm编辑器中轻松分析和可视化line_profiler的结果。
linepfiler在其他答案中也提到过,它是一个很好的工具,可以准确分析python解释器在某些行中花费了多少时间。
我创建的PyCharm插件可以在这里找到:https://plugins.jetbrains.com/plugin/16536-line-profiler
它需要一个python环境中的助手包,名为line profiler pycharm,可以使用pip或插件本身安装。
在PyCharm中安装插件后:
用line_profiler_pycharm.profile装饰器装饰您想要评测的任何函数使用“轮廓线”跑步器跑步
结果截图:
添加到https://stackoverflow.com/a/582337/1070617,
我编写了这个模块,允许您使用cProfile并轻松查看其输出。更多信息:https://github.com/ymichael/cprofilev
$ python -m cprofilev /your/python/program
# Go to http://localhost:4000 to view collected statistics.
另请参见:http://ymichael.com/2014/03/08/profiling-python-with-cprofile.html如何理解收集的统计数据。