Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。

描述Python程序运行时间的好方法是什么?


当前回答

最近,我为PyCharm创建了一个插件,使用该插件,您可以在PyCharm编辑器中轻松分析和可视化line_profiler的结果。

linepfiler在其他答案中也提到过,它是一个很好的工具,可以准确分析python解释器在某些行中花费了多少时间。

我创建的PyCharm插件可以在这里找到:https://plugins.jetbrains.com/plugin/16536-line-profiler

它需要一个python环境中的助手包,名为line profiler pycharm,可以使用pip或插件本身安装。

在PyCharm中安装插件后:

用line_profiler_pycharm.profile装饰器装饰您想要评测的任何函数使用“轮廓线”跑步器跑步

结果截图:

其他回答

我刚刚从pypref_time中开发了自己的分析器:

https://github.com/modaresimr/auto_profiler

更新版本2

安装:

pip install auto_profiler

快速入门:

from auto_profiler import Profiler

with Profiler():
    your_function()

在Jupyter中使用,可以实时查看已用时间

更新版本1

通过添加装饰器,它将显示一个耗时的函数树

@探查器(深度=4)

Install by: pip install auto_profiler

实例

import time # line number 1
import random

from auto_profiler import Profiler, Tree

def f1():
    mysleep(.6+random.random())

def mysleep(t):
    time.sleep(t)

def fact(i):
    f1()
    if(i==1):
        return 1
    return i*fact(i-1)

def main():
    for i in range(5):
        f1()

    fact(3)


with Profiler(depth=4):
    main()

示例输出


Time   [Hits * PerHit] Function name [Called from] [function location]
-----------------------------------------------------------------------
8.974s [1 * 8.974]  main  [auto-profiler/profiler.py:267]  [/test/t2.py:30]
├── 5.954s [5 * 1.191]  f1  [/test/t2.py:34]  [/test/t2.py:14]
│   └── 5.954s [5 * 1.191]  mysleep  [/test/t2.py:15]  [/test/t2.py:17]
│       └── 5.954s [5 * 1.191]  <time.sleep>
|
|
|   # The rest is for the example recursive function call fact
└── 3.020s [1 * 3.020]  fact  [/test/t2.py:36]  [/test/t2.py:20]
    ├── 0.849s [1 * 0.849]  f1  [/test/t2.py:21]  [/test/t2.py:14]
    │   └── 0.849s [1 * 0.849]  mysleep  [/test/t2.py:15]  [/test/t2.py:17]
    │       └── 0.849s [1 * 0.849]  <time.sleep>
    └── 2.171s [1 * 2.171]  fact  [/test/t2.py:24]  [/test/t2.py:20]
        ├── 1.552s [1 * 1.552]  f1  [/test/t2.py:21]  [/test/t2.py:14]
        │   └── 1.552s [1 * 1.552]  mysleep  [/test/t2.py:15]  [/test/t2.py:17]
        └── 0.619s [1 * 0.619]  fact  [/test/t2.py:24]  [/test/t2.py:20]
            └── 0.619s [1 * 0.619]  f1  [/test/t2.py:21]  [/test/t2.py:14]

cProfile非常适合快速分析,但大多数时候它都以错误结束。函数runctx通过正确初始化环境和变量来解决这个问题,希望它对某些人有用:

import cProfile
cProfile.runctx('foo()', None, locals())

不久前,我制作了pycallgraph,它从您的Python代码生成可视化。编辑:我已经将示例更新为使用3.3,这是本文撰写时的最新版本。

在pip安装pycallgraph并安装GraphViz之后,您可以从命令行运行它:

pycallgraph graphviz -- ./mypythonscript.py

或者,您可以分析代码的特定部分:

from pycallgraph import PyCallGraph
from pycallgraph.output import GraphvizOutput

with PyCallGraph(output=GraphvizOutput()):
    code_to_profile()

其中任何一个都将生成类似下图的pycallgraph.png文件:

我的方法是使用雅皮语(https://github.com/sumerc/yappi). 它与RPC服务器结合使用特别有用,在RPC服务器中(甚至只是为了调试),您可以注册方法来启动、停止和打印配置信息,例如,通过以下方式:

@staticmethod
def startProfiler():
    yappi.start()

@staticmethod
def stopProfiler():
    yappi.stop()

@staticmethod
def printProfiler():
    stats = yappi.get_stats(yappi.SORTTYPE_TTOT, yappi.SORTORDER_DESC, 20)
    statPrint = '\n'
    namesArr = [len(str(stat[0])) for stat in stats.func_stats]
    log.debug("namesArr %s", str(namesArr))
    maxNameLen = max(namesArr)
    log.debug("maxNameLen: %s", maxNameLen)

    for stat in stats.func_stats:
        nameAppendSpaces = [' ' for i in range(maxNameLen - len(stat[0]))]
        log.debug('nameAppendSpaces: %s', nameAppendSpaces)
        blankSpace = ''
        for space in nameAppendSpaces:
            blankSpace += space

        log.debug("adding spaces: %s", len(nameAppendSpaces))
        statPrint = statPrint + str(stat[0]) + blankSpace + " " + str(stat[1]).ljust(8) + "\t" + str(
            round(stat[2], 2)).ljust(8 - len(str(stat[2]))) + "\t" + str(round(stat[3], 2)) + "\n"

    log.log(1000, "\nname" + ''.ljust(maxNameLen - 4) + " ncall \tttot \ttsub")
    log.log(1000, statPrint)

然后,当您的程序工作时,您可以通过调用startProfiler RPC方法随时启动探查器,并通过调用printProfiler(或修改RPC方法将其返回给调用者)将探查信息转储到日志文件中,并获得这样的输出:

2014-02-19 16:32:24,128-|SVR-MAIN  |-(Thread-3   )-Level 1000: 
name                                                                                                                                      ncall     ttot    tsub
2014-02-19 16:32:24,128-|SVR-MAIN  |-(Thread-3   )-Level 1000: 
C:\Python27\lib\sched.py.run:80                                                                                                           22        0.11    0.05
M:\02_documents\_repos\09_aheadRepos\apps\ahdModbusSrv\pyAheadRpcSrv\xmlRpc.py.iterFnc:293                                                22        0.11    0.0
M:\02_documents\_repos\09_aheadRepos\apps\ahdModbusSrv\serverMain.py.makeIteration:515                                                    22        0.11    0.0
M:\02_documents\_repos\09_aheadRepos\apps\ahdModbusSrv\pyAheadRpcSrv\PicklingXMLRPC.py._dispatch:66                                       1         0.0     0.0
C:\Python27\lib\BaseHTTPServer.py.date_time_string:464                                                                                    1         0.0     0.0
c:\users\zasiec~1\appdata\local\temp\easy_install-hwcsr1\psutil-1.1.2-py2.7-win32.egg.tmp\psutil\_psmswindows.py._get_raw_meminfo:243     4         0.0     0.0
C:\Python27\lib\SimpleXMLRPCServer.py.decode_request_content:537                                                                          1         0.0     0.0
c:\users\zasiec~1\appdata\local\temp\easy_install-hwcsr1\psutil-1.1.2-py2.7-win32.egg.tmp\psutil\_psmswindows.py.get_system_cpu_times:148 4         0.0     0.0
<string>.__new__:8                                                                                                                        220       0.0     0.0
C:\Python27\lib\socket.py.close:276                                                                                                       4         0.0     0.0
C:\Python27\lib\threading.py.__init__:558                                                                                                 1         0.0     0.0
<string>.__new__:8                                                                                                                        4         0.0     0.0
C:\Python27\lib\threading.py.notify:372                                                                                                   1         0.0     0.0
C:\Python27\lib\rfc822.py.getheader:285                                                                                                   4         0.0     0.0
C:\Python27\lib\BaseHTTPServer.py.handle_one_request:301                                                                                  1         0.0     0.0
C:\Python27\lib\xmlrpclib.py.end:816                                                                                                      3         0.0     0.0
C:\Python27\lib\SimpleXMLRPCServer.py.do_POST:467                                                                                         1         0.0     0.0
C:\Python27\lib\SimpleXMLRPCServer.py.is_rpc_path_valid:460                                                                               1         0.0     0.0
C:\Python27\lib\SocketServer.py.close_request:475                                                                                         1         0.0     0.0
c:\users\zasiec~1\appdata\local\temp\easy_install-hwcsr1\psutil-1.1.2-py2.7-win32.egg.tmp\psutil\__init__.py.cpu_times:1066               4         0.0     0.0 

它可能对短脚本不太有用,但有助于优化服务器类型的进程,特别是考虑到printProfiler方法可以随时间多次调用,以分析和比较例如不同的程序使用场景。

在较新版本的yappi中,以下代码将起作用:

@staticmethod
def printProfile():
    yappi.get_func_stats().print_all()

根据乔·肖(Joe Shaw)关于多线程代码无法按预期工作的回答,我认为cProfile中的runcall方法只是围绕着已配置的函数调用执行self.enable()和self.disable()调用,因此您可以简单地自己执行,并在对现有代码的干扰最小的情况下使用任何代码。