Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
我刚刚从pypref_time中开发了自己的分析器:
https://github.com/modaresimr/auto_profiler
更新版本2
安装:
pip install auto_profiler
快速入门:
from auto_profiler import Profiler
with Profiler():
your_function()
在Jupyter中使用,可以实时查看已用时间
更新版本1
通过添加装饰器,它将显示一个耗时的函数树
@探查器(深度=4)
Install by: pip install auto_profiler
实例
import time # line number 1
import random
from auto_profiler import Profiler, Tree
def f1():
mysleep(.6+random.random())
def mysleep(t):
time.sleep(t)
def fact(i):
f1()
if(i==1):
return 1
return i*fact(i-1)
def main():
for i in range(5):
f1()
fact(3)
with Profiler(depth=4):
main()
示例输出
Time [Hits * PerHit] Function name [Called from] [function location]
-----------------------------------------------------------------------
8.974s [1 * 8.974] main [auto-profiler/profiler.py:267] [/test/t2.py:30]
├── 5.954s [5 * 1.191] f1 [/test/t2.py:34] [/test/t2.py:14]
│ └── 5.954s [5 * 1.191] mysleep [/test/t2.py:15] [/test/t2.py:17]
│ └── 5.954s [5 * 1.191] <time.sleep>
|
|
| # The rest is for the example recursive function call fact
└── 3.020s [1 * 3.020] fact [/test/t2.py:36] [/test/t2.py:20]
├── 0.849s [1 * 0.849] f1 [/test/t2.py:21] [/test/t2.py:14]
│ └── 0.849s [1 * 0.849] mysleep [/test/t2.py:15] [/test/t2.py:17]
│ └── 0.849s [1 * 0.849] <time.sleep>
└── 2.171s [1 * 2.171] fact [/test/t2.py:24] [/test/t2.py:20]
├── 1.552s [1 * 1.552] f1 [/test/t2.py:21] [/test/t2.py:14]
│ └── 1.552s [1 * 1.552] mysleep [/test/t2.py:15] [/test/t2.py:17]
└── 0.619s [1 * 0.619] fact [/test/t2.py:24] [/test/t2.py:20]
└── 0.619s [1 * 0.619] f1 [/test/t2.py:21] [/test/t2.py:14]
其他回答
我的方法是使用雅皮语(https://github.com/sumerc/yappi). 它与RPC服务器结合使用特别有用,在RPC服务器中(甚至只是为了调试),您可以注册方法来启动、停止和打印配置信息,例如,通过以下方式:
@staticmethod
def startProfiler():
yappi.start()
@staticmethod
def stopProfiler():
yappi.stop()
@staticmethod
def printProfiler():
stats = yappi.get_stats(yappi.SORTTYPE_TTOT, yappi.SORTORDER_DESC, 20)
statPrint = '\n'
namesArr = [len(str(stat[0])) for stat in stats.func_stats]
log.debug("namesArr %s", str(namesArr))
maxNameLen = max(namesArr)
log.debug("maxNameLen: %s", maxNameLen)
for stat in stats.func_stats:
nameAppendSpaces = [' ' for i in range(maxNameLen - len(stat[0]))]
log.debug('nameAppendSpaces: %s', nameAppendSpaces)
blankSpace = ''
for space in nameAppendSpaces:
blankSpace += space
log.debug("adding spaces: %s", len(nameAppendSpaces))
statPrint = statPrint + str(stat[0]) + blankSpace + " " + str(stat[1]).ljust(8) + "\t" + str(
round(stat[2], 2)).ljust(8 - len(str(stat[2]))) + "\t" + str(round(stat[3], 2)) + "\n"
log.log(1000, "\nname" + ''.ljust(maxNameLen - 4) + " ncall \tttot \ttsub")
log.log(1000, statPrint)
然后,当您的程序工作时,您可以通过调用startProfiler RPC方法随时启动探查器,并通过调用printProfiler(或修改RPC方法将其返回给调用者)将探查信息转储到日志文件中,并获得这样的输出:
2014-02-19 16:32:24,128-|SVR-MAIN |-(Thread-3 )-Level 1000:
name ncall ttot tsub
2014-02-19 16:32:24,128-|SVR-MAIN |-(Thread-3 )-Level 1000:
C:\Python27\lib\sched.py.run:80 22 0.11 0.05
M:\02_documents\_repos\09_aheadRepos\apps\ahdModbusSrv\pyAheadRpcSrv\xmlRpc.py.iterFnc:293 22 0.11 0.0
M:\02_documents\_repos\09_aheadRepos\apps\ahdModbusSrv\serverMain.py.makeIteration:515 22 0.11 0.0
M:\02_documents\_repos\09_aheadRepos\apps\ahdModbusSrv\pyAheadRpcSrv\PicklingXMLRPC.py._dispatch:66 1 0.0 0.0
C:\Python27\lib\BaseHTTPServer.py.date_time_string:464 1 0.0 0.0
c:\users\zasiec~1\appdata\local\temp\easy_install-hwcsr1\psutil-1.1.2-py2.7-win32.egg.tmp\psutil\_psmswindows.py._get_raw_meminfo:243 4 0.0 0.0
C:\Python27\lib\SimpleXMLRPCServer.py.decode_request_content:537 1 0.0 0.0
c:\users\zasiec~1\appdata\local\temp\easy_install-hwcsr1\psutil-1.1.2-py2.7-win32.egg.tmp\psutil\_psmswindows.py.get_system_cpu_times:148 4 0.0 0.0
<string>.__new__:8 220 0.0 0.0
C:\Python27\lib\socket.py.close:276 4 0.0 0.0
C:\Python27\lib\threading.py.__init__:558 1 0.0 0.0
<string>.__new__:8 4 0.0 0.0
C:\Python27\lib\threading.py.notify:372 1 0.0 0.0
C:\Python27\lib\rfc822.py.getheader:285 4 0.0 0.0
C:\Python27\lib\BaseHTTPServer.py.handle_one_request:301 1 0.0 0.0
C:\Python27\lib\xmlrpclib.py.end:816 3 0.0 0.0
C:\Python27\lib\SimpleXMLRPCServer.py.do_POST:467 1 0.0 0.0
C:\Python27\lib\SimpleXMLRPCServer.py.is_rpc_path_valid:460 1 0.0 0.0
C:\Python27\lib\SocketServer.py.close_request:475 1 0.0 0.0
c:\users\zasiec~1\appdata\local\temp\easy_install-hwcsr1\psutil-1.1.2-py2.7-win32.egg.tmp\psutil\__init__.py.cpu_times:1066 4 0.0 0.0
它可能对短脚本不太有用,但有助于优化服务器类型的进程,特别是考虑到printProfiler方法可以随时间多次调用,以分析和比较例如不同的程序使用场景。
在较新版本的yappi中,以下代码将起作用:
@staticmethod
def printProfile():
yappi.get_func_stats().print_all()
pprofile文件
line_profiler(此处已介绍)也启发了pprofile,其描述如下:
行粒度、线程感知确定性和统计纯python剖面仪
它提供了line_profiler的行粒度,是纯Python,可以用作独立命令或模块,甚至可以生成callgrind格式的文件,这些文件可以很容易地使用[k|q]cachegrind进行分析。
vprof公司
还有vprof,一个Python包,描述如下:
[…]为各种Python程序特性(如运行时间和内存使用)提供丰富的交互式可视化。
对于像austin这样的统计分析器,不需要检测,这意味着您可以简单地使用
austin python3 my_script.py
原始输出不是很有用,但您可以将其传输到flamegraph.pl以获得该数据的火焰图表示,该火焰图提供了时间(以微秒为单位的实时)的细分。
austin python3 my_script.py | flamegraph.pl > my_script_profile.svg
或者,您也可以使用web应用程序Speedscope.app快速可视化收集的样本。如果您安装了pprof,还可以获取austin python(例如,pipx安装austin python)并使用austin2prof转换为pprof格式。
然而,如果您安装了VS Code,您可以使用Austin扩展来获得更交互式的体验,包括源代码热图、顶级函数和收集的调用堆栈
如果您想使用终端,也可以使用TUI,它也具有实时图形模式:
有很多很好的答案,但它们要么使用命令行,要么使用一些外部程序来分析和/或排序结果。
我真的错过了在IDE(eclipsePyDev)中使用而不接触命令行或安装任何东西的方法。所以就在这里。
无命令行分析
def count():
from math import sqrt
for x in range(10**5):
sqrt(x)
if __name__ == '__main__':
import cProfile, pstats
cProfile.run("count()", "{}.profile".format(__file__))
s = pstats.Stats("{}.profile".format(__file__))
s.strip_dirs()
s.sort_stats("time").print_stats(10)
有关更多信息,请参阅文档或其他答案。
当我不是服务器的根用户时,我使用lsprofcalltree.py并像这样运行我的程序:
python lsprofcalltree.py -o callgrind.1 test.py
然后我可以用任何callgrind兼容的软件打开报告,比如qcachegrind