Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
我刚刚从pypref_time中开发了自己的分析器:
https://github.com/modaresimr/auto_profiler
更新版本2
安装:
pip install auto_profiler
快速入门:
from auto_profiler import Profiler
with Profiler():
your_function()
在Jupyter中使用,可以实时查看已用时间
更新版本1
通过添加装饰器,它将显示一个耗时的函数树
@探查器(深度=4)
Install by: pip install auto_profiler
实例
import time # line number 1
import random
from auto_profiler import Profiler, Tree
def f1():
mysleep(.6+random.random())
def mysleep(t):
time.sleep(t)
def fact(i):
f1()
if(i==1):
return 1
return i*fact(i-1)
def main():
for i in range(5):
f1()
fact(3)
with Profiler(depth=4):
main()
示例输出
Time [Hits * PerHit] Function name [Called from] [function location]
-----------------------------------------------------------------------
8.974s [1 * 8.974] main [auto-profiler/profiler.py:267] [/test/t2.py:30]
├── 5.954s [5 * 1.191] f1 [/test/t2.py:34] [/test/t2.py:14]
│ └── 5.954s [5 * 1.191] mysleep [/test/t2.py:15] [/test/t2.py:17]
│ └── 5.954s [5 * 1.191] <time.sleep>
|
|
| # The rest is for the example recursive function call fact
└── 3.020s [1 * 3.020] fact [/test/t2.py:36] [/test/t2.py:20]
├── 0.849s [1 * 0.849] f1 [/test/t2.py:21] [/test/t2.py:14]
│ └── 0.849s [1 * 0.849] mysleep [/test/t2.py:15] [/test/t2.py:17]
│ └── 0.849s [1 * 0.849] <time.sleep>
└── 2.171s [1 * 2.171] fact [/test/t2.py:24] [/test/t2.py:20]
├── 1.552s [1 * 1.552] f1 [/test/t2.py:21] [/test/t2.py:14]
│ └── 1.552s [1 * 1.552] mysleep [/test/t2.py:15] [/test/t2.py:17]
└── 0.619s [1 * 0.619] fact [/test/t2.py:24] [/test/t2.py:20]
└── 0.619s [1 * 0.619] f1 [/test/t2.py:21] [/test/t2.py:14]
其他回答
pprofile文件
line_profiler(此处已介绍)也启发了pprofile,其描述如下:
行粒度、线程感知确定性和统计纯python剖面仪
它提供了line_profiler的行粒度,是纯Python,可以用作独立命令或模块,甚至可以生成callgrind格式的文件,这些文件可以很容易地使用[k|q]cachegrind进行分析。
vprof公司
还有vprof,一个Python包,描述如下:
[…]为各种Python程序特性(如运行时间和内存使用)提供丰富的交互式可视化。
根据乔·肖(Joe Shaw)关于多线程代码无法按预期工作的回答,我认为cProfile中的runcall方法只是围绕着已配置的函数调用执行self.enable()和self.disable()调用,因此您可以简单地自己执行,并在对现有代码的干扰最小的情况下使用任何代码。
值得指出的是,使用探查器仅在主线程上有效(默认情况下),如果使用它们,您将无法从其他线程获得任何信息。这可能有点棘手,因为探查器文档中完全没有提到它。
如果您还想评测线程,那么您需要查看文档中的threading.setprofile()函数。
您也可以创建自己的线程.Thread子类:
class ProfiledThread(threading.Thread):
# Overrides threading.Thread.run()
def run(self):
profiler = cProfile.Profile()
try:
return profiler.runcall(threading.Thread.run, self)
finally:
profiler.dump_stats('myprofile-%d.profile' % (self.ident,))
并使用ProfiledThread类而不是标准类。它可能会给你更多的灵活性,但我不确定它是否值得,特别是如果你使用的是不使用你的类的第三方代码。
我发现cprofiler和其他资源更多地用于优化目的,而不是调试。
我制作了自己的测试模块,用于简单的python脚本速度测试。(在我的例子中,使用ScriptProfilerPy测试了1K+行py文件,并在几分钟内将代码速度提高了10倍。
模块ScriptProfilerPy()将运行代码,并向其添加时间戳。我把模块放在这里:https://github.com/Lucas-BLP/ScriptProfilerPy
Use:
from speed_testpy import ScriptProfilerPy
ScriptProfilerPy("path_to_your_script_to_test.py").Profiler()
输出:
还值得一提的是GUI cProfile转储查看器RunSnakeRun。它允许您排序和选择,从而放大程序的相关部分。图片中矩形的大小与所用时间成正比。如果您将鼠标悬停在一个矩形上,它将突出显示表中的调用以及地图上的任何位置。双击矩形时,它会放大该部分。它将显示谁调用了该部分以及该部分调用了什么。
描述性信息非常有用。它向您显示了该位的代码,当您处理内置库调用时,该代码会很有用。它告诉要查找代码的文件和行。
还想指出,OP说的是“剖析”,但似乎他是指“时机”。请记住,程序在评测时运行速度会变慢。