我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。

有人能帮忙吗?


当前回答

当使用加法运算符+将列与字符串连接起来时,如果其中任何一个是NaN,则整个输出将是NaN,因此使用fillna()

df["join"] = "some" + df["col"].fillna(df["val_if_nan"])

其他回答

如果两个列都是字符串,你可以直接连接它们:

df["period"] = df["Year"] + df["quarter"]

如果一个(或两个)列不是字符串类型的,你应该先转换它(它们),

df["period"] = df["Year"].astype(str) + df["quarter"]

这样做时要当心nan !


如果你需要连接多个字符串列,你可以使用agg:

df['period'] = df[['Year', 'quarter', ...]].agg('-'.join, axis=1)

其中“-”是分隔符。

更有效率的是

def concat_df_str1(df):
    """ run time: 1.3416s """
    return pd.Series([''.join(row.astype(str)) for row in df.values], index=df.index)

下面是一个时间测试:

import numpy as np
import pandas as pd

from time import time


def concat_df_str1(df):
    """ run time: 1.3416s """
    return pd.Series([''.join(row.astype(str)) for row in df.values], index=df.index)


def concat_df_str2(df):
    """ run time: 5.2758s """
    return df.astype(str).sum(axis=1)


def concat_df_str3(df):
    """ run time: 5.0076s """
    df = df.astype(str)
    return df[0] + df[1] + df[2] + df[3] + df[4] + \
           df[5] + df[6] + df[7] + df[8] + df[9]


def concat_df_str4(df):
    """ run time: 7.8624s """
    return df.astype(str).apply(lambda x: ''.join(x), axis=1)


def main():
    df = pd.DataFrame(np.zeros(1000000).reshape(100000, 10))
    df = df.astype(int)

    time1 = time()
    df_en = concat_df_str4(df)
    print('run time: %.4fs' % (time() - time1))
    print(df_en.head(10))


if __name__ == '__main__':
    main()

最后,当使用sum(concat_df_str2)时,结果不是简单的concat,它将转换为整数。

当使用加法运算符+将列与字符串连接起来时,如果其中任何一个是NaN,则整个输出将是NaN,因此使用fillna()

df["join"] = "some" + df["col"].fillna(df["val_if_nan"])

让我们假设你的数据框架是df,列是Year和Quarter。

import pandas as pd
df = pd.DataFrame({'Quarter':'q1 q2 q3 q4'.split(), 'Year':'2000'})

假设我们想要查看数据框架;

df
>>>  Quarter    Year
   0    q1      2000
   1    q2      2000
   2    q3      2000
   3    q4      2000

最后,将年度和季度连接起来,如下所示。

df['Period'] = df['Year'] + ' ' + df['Quarter']

现在可以打印df来查看结果的数据框架。

df
>>>  Quarter    Year    Period
    0   q1      2000    2000 q1
    1   q2      2000    2000 q2
    2   q3      2000    2000 q3
    3   q4      2000    2000 q4

如果你不想要年和季度之间的空间,只需删除它做;

df['Period'] = df['Year'] + df['Quarter']

使用.combine_first。

df['Period'] = df['Year'].combine_first(df['Quarter'])