我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。
有人能帮忙吗?
我有一个20 x 4000的数据帧在Python中使用熊猫。其中两列分别命名为Year和quarter。我想创建一个名为period的变量,使Year = 2000, quarter= q2变为2000q2。
有人能帮忙吗?
当前回答
当使用加法运算符+将列与字符串连接起来时,如果其中任何一个是NaN,则整个输出将是NaN,因此使用fillna()
df["join"] = "some" + df["col"].fillna(df["val_if_nan"])
其他回答
泛化到多个列,为什么不呢:
columns = ['whatever', 'columns', 'you', 'choose']
df['period'] = df[columns].astype(str).sum(axis=1)
可以使用DataFrame的assign方法:
df= (pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']}).
assign(period=lambda x: x.Year+x.quarter ))
类似于@geher的答案,但可以使用任何你喜欢的分隔符:
SEP = " "
INPUT_COLUMNS_WITH_SEP = ",sep,".join(INPUT_COLUMNS).split(",")
df.assign(sep=SEP)[INPUT_COLUMNS_WITH_SEP].sum(axis=1)
使用zip可以更快:
df["period"] = [''.join(i) for i in zip(df["Year"].map(str),df["quarter"])]
图:
import pandas as pd
import numpy as np
import timeit
import matplotlib.pyplot as plt
from collections import defaultdict
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
myfuncs = {
"df['Year'].astype(str) + df['quarter']":
lambda: df['Year'].astype(str) + df['quarter'],
"df['Year'].map(str) + df['quarter']":
lambda: df['Year'].map(str) + df['quarter'],
"df.Year.str.cat(df.quarter)":
lambda: df.Year.str.cat(df.quarter),
"df.loc[:, ['Year','quarter']].astype(str).sum(axis=1)":
lambda: df.loc[:, ['Year','quarter']].astype(str).sum(axis=1),
"df[['Year','quarter']].astype(str).sum(axis=1)":
lambda: df[['Year','quarter']].astype(str).sum(axis=1),
"df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)":
lambda: df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1),
"[''.join(i) for i in zip(dataframe['Year'].map(str),dataframe['quarter'])]":
lambda: [''.join(i) for i in zip(df["Year"].map(str),df["quarter"])]
}
d = defaultdict(dict)
step = 10
cont = True
while cont:
lendf = len(df); print(lendf)
for k,v in myfuncs.items():
iters = 1
t = 0
while t < 0.2:
ts = timeit.repeat(v, number=iters, repeat=3)
t = min(ts)
iters *= 10
d[k][lendf] = t/iters
if t > 2: cont = False
df = pd.concat([df]*step)
pd.DataFrame(d).plot().legend(loc='upper center', bbox_to_anchor=(0.5, -0.15))
plt.yscale('log'); plt.xscale('log'); plt.ylabel('seconds'); plt.xlabel('df rows')
plt.show()
该解决方案使用中间步骤,将DataFrame的两列压缩为包含值列表的单列。 这不仅适用于字符串,而且适用于所有类型的列-dtype
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
df['list']=df[['Year','quarter']].values.tolist()
df['period']=df['list'].apply(''.join)
print(df)
结果:
Year quarter list period
0 2014 q1 [2014, q1] 2014q1
1 2015 q2 [2015, q2] 2015q2