我有一个名为spam的数据集,其中包含58列和约3500行与垃圾邮件相关的数据。
我计划将来在这个数据集上运行一些线性回归,但我想事先做一些预处理,并将列标准化,使其具有零平均值和单位方差。
有人告诉我,最好的方法是用R,所以我想问,如何用R实现归一化?我已经正确加载了数据,我只是在寻找一些包或方法来执行这个任务。
我有一个名为spam的数据集,其中包含58列和约3500行与垃圾邮件相关的数据。
我计划将来在这个数据集上运行一些线性回归,但我想事先做一些预处理,并将列标准化,使其具有零平均值和单位方差。
有人告诉我,最好的方法是用R,所以我想问,如何用R实现归一化?我已经正确加载了数据,我只是在寻找一些包或方法来执行这个任务。
当前回答
您还可以使用数据轻松地将数据规范化。clusterSim包中的归一化函数。它提供了不同的数据规范化方法。
data.Normalization (x,type="n0",normalization="column")
参数
x 向量,矩阵或数据集 类型 归一化类型: N0 -没有归一化
N1 -标准化((x-mean)/sd)
N2 -位置标准化((x-median)/mad)
N3 -单元化((x-mean)/range)
N3a -位置单元化(x-median /range)
N4 -最小值为零的单元化((x-min)/范围)
N5 -归一化范围<-1,1> ((x-mean)/max(abs(x-mean)))
N5a -位置归一化范围<-1,1> ((x-median)/max(abs(x-median)))
N6 -商变换(x/sd)
N6a -位置商变换(x/mad)
N7 -商变换(x/range)
N8 -商变换(x/max)
N9 -商数变换(x/mean)
N9a -位置商变换(x/median)
N10 -商变换(x/sum)
n11 -商变换(x/√(SSQ))
N12 -归一化((x-mean)/根号(sum((x-mean)^2))
N12a -位置归一化((x-median)/平方根(sum(x-median)^2))
N13 -归一化,中心点为0 ((x-midrange)/(range/2))
归一化 "列" -由变量归一化,"行" -由对象归一化
其他回答
使用“recommderlab”包。下载并安装软件包。 这个包内置了一个命令“Normalize”。它还允许你从众多归一化方法中选择一种即"中心"或" z分数" 请参考以下示例:
## create a matrix with ratings
m <- matrix(sample(c(NA,0:5),50, replace=TRUE, prob=c(.5,rep(.5/6,6))),nrow=5, ncol=10, dimnames = list(users=paste('u', 1:5, sep=”), items=paste('i', 1:10, sep=”)))
## do normalization
r <- as(m, "realRatingMatrix")
#here, 'centre' is the default method
r_n1 <- normalize(r)
#here "Z-score" is the used method used
r_n2 <- normalize(r, method="Z-score")
r
r_n1
r_n2
## show normalized data
image(r, main="Raw Data")
image(r_n1, main="Centered")
image(r_n2, main="Z-Score Normalization")
下面的代码可能是实现这一目标的最短方法。
dataframe <- apply(dataframe, 2, scale)
折叠包提供了最快的缩放函数-在c++中使用Welfords在线算法实现:
dat <- data.frame(x = rnorm(1e6, 30, .2),
y = runif(1e6, 3, 5),
z = runif(1e6, 10, 20))
library(collapse)
library(microbenchmark)
microbenchmark(fscale(dat), scale(dat))
Unit: milliseconds
expr min lq mean median uq max neval cld
fscale(dat) 27.86456 29.5864 38.96896 30.80421 43.79045 313.5729 100 a
scale(dat) 357.07130 391.0914 489.93546 416.33626 625.38561 793.2243 100 b
此外:fscale是S3通用的向量、矩阵和数据帧,还支持分组和/或加权缩放操作,以及缩放到任意均值和标准偏差。
意识到这个问题已经很老了,一个答案已经被接受了,我将提供另一个答案供参考。
缩放是有限的,因为它缩放所有变量。下面的解决方案只允许缩放特定的变量名,同时保持其他变量不变(变量名可以动态生成):
library(dplyr)
set.seed(1234)
dat <- data.frame(x = rnorm(10, 30, .2),
y = runif(10, 3, 5),
z = runif(10, 10, 20))
dat
dat2 <- dat %>% mutate_at(c("y", "z"), ~(scale(.) %>% as.vector))
dat2
这给了我这个:
> dat
x y z
1 29.75859 3.633225 14.56091
2 30.05549 3.605387 12.65187
3 30.21689 3.318092 13.04672
4 29.53086 3.079992 15.07307
5 30.08582 3.437599 11.81096
6 30.10121 4.621197 17.59671
7 29.88505 4.051395 12.01248
8 29.89067 4.829316 12.58810
9 29.88711 4.662690 19.92150
10 29.82199 3.091541 18.07352
and
> dat2 <- dat %>% mutate_at(c("y", "z"), ~(scale(.) %>% as.vector))
> dat2
x y z
1 29.75859 -0.3004815 -0.06016029
2 30.05549 -0.3423437 -0.72529604
3 30.21689 -0.7743696 -0.58772361
4 29.53086 -1.1324181 0.11828039
5 30.08582 -0.5946582 -1.01827752
6 30.10121 1.1852038 0.99754666
7 29.88505 0.3283513 -0.94806607
8 29.89067 1.4981677 -0.74751378
9 29.88711 1.2475998 1.80753470
10 29.82199 -1.1150515 1.16367556
编辑1(2016):处理朱利安的评论:规模的输出是Nx1矩阵,所以理想情况下,我们应该添加一个as。向量,将矩阵类型转换回向量类型。谢谢朱利安!
编辑2(2019):引用杜乔·A。对于最新的dplyr(0.8版本),您需要更改dplyr::funcs with list,如dat %>% mutate_each_(list(~scale(.) %>% as.vector), vars=c("y","z"))
EDIT 3(2020):感谢@mj_whales:旧的解决方案已弃用,现在我们需要使用mutate_at。
在我碰巧发现这条线索之前,我也有同样的问题。我有用户依赖的列类型,所以我写了一个for循环遍历它们并获得所需的列。也许有更好的方法,但这个方法很好地解决了问题:
for(i in 1:length(colnames(df))) {
if(class(df[,i]) == "numeric" || class(df[,i]) == "integer") {
df[,i] <- as.vector(scale(df[,i])) }
}
作为。向量是一个必要的部分,因为scale做rownames x 1矩阵这通常不是你想要的在data。frame中。