我有一个名为spam的数据集,其中包含58列和约3500行与垃圾邮件相关的数据。
我计划将来在这个数据集上运行一些线性回归,但我想事先做一些预处理,并将列标准化,使其具有零平均值和单位方差。
有人告诉我,最好的方法是用R,所以我想问,如何用R实现归一化?我已经正确加载了数据,我只是在寻找一些包或方法来执行这个任务。
我有一个名为spam的数据集,其中包含58列和约3500行与垃圾邮件相关的数据。
我计划将来在这个数据集上运行一些线性回归,但我想事先做一些预处理,并将列标准化,使其具有零平均值和单位方差。
有人告诉我,最好的方法是用R,所以我想问,如何用R实现归一化?我已经正确加载了数据,我只是在寻找一些包或方法来执行这个任务。
当前回答
dplyr包有两个函数可以做到这一点。
> require(dplyr)
要更改数据表的特定列,可以使用mutate_at()函数。要更改所有列,可以使用mutate_all。
下面是使用这些函数来标准化数据的简单示例。
改变特定的列:
dt = data.table(a = runif(3500), b = runif(3500), c = runif(3500))
dt = data.table(dt %>% mutate_at(vars("a", "c"), scale)) # can also index columns by number, e.g., vars(c(1,3))
> apply(dt, 2, mean)
a b c
1.783137e-16 5.064855e-01 -5.245395e-17
> apply(dt, 2, sd)
a b c
1.0000000 0.2906622 1.0000000
改变所有列:
dt = data.table(a = runif(3500), b = runif(3500), c = runif(3500))
dt = data.table(dt %>% mutate_all(scale))
> apply(dt, 2, mean)
a b c
-1.728266e-16 9.291994e-17 1.683551e-16
> apply(dt, 2, sd)
a b c
1 1 1
其他回答
@BBKim给出了最好的答案,但它可以做得更短。我很惊讶居然还没人想到。
<- data.frame(x = rnorm(10,30, .2), y = runif(10,3,5)) 应用(dat, 2, function(x) (x - mean(x)) / sd(x))
下面的代码可能是实现这一目标的最短方法。
dataframe <- apply(dataframe, 2, scale)
我假设你想要的是均值为0,标准差为1。如果你的数据在一个数据框架中,所有的列都是数值的,你可以简单地调用数据上的缩放函数来做你想做的事情。
dat <- data.frame(x = rnorm(10, 30, .2), y = runif(10, 3, 5))
scaled.dat <- scale(dat)
# check that we get mean of 0 and sd of 1
colMeans(scaled.dat) # faster version of apply(scaled.dat, 2, mean)
apply(scaled.dat, 2, sd)
使用内置函数是有品位的。比如这只猫:
dplyr包有两个函数可以做到这一点。
> require(dplyr)
要更改数据表的特定列,可以使用mutate_at()函数。要更改所有列,可以使用mutate_all。
下面是使用这些函数来标准化数据的简单示例。
改变特定的列:
dt = data.table(a = runif(3500), b = runif(3500), c = runif(3500))
dt = data.table(dt %>% mutate_at(vars("a", "c"), scale)) # can also index columns by number, e.g., vars(c(1,3))
> apply(dt, 2, mean)
a b c
1.783137e-16 5.064855e-01 -5.245395e-17
> apply(dt, 2, sd)
a b c
1.0000000 0.2906622 1.0000000
改变所有列:
dt = data.table(a = runif(3500), b = runif(3500), c = runif(3500))
dt = data.table(dt %>% mutate_all(scale))
> apply(dt, 2, mean)
a b c
-1.728266e-16 9.291994e-17 1.683551e-16
> apply(dt, 2, sd)
a b c
1 1 1
您还可以使用数据轻松地将数据规范化。clusterSim包中的归一化函数。它提供了不同的数据规范化方法。
data.Normalization (x,type="n0",normalization="column")
参数
x 向量,矩阵或数据集 类型 归一化类型: N0 -没有归一化
N1 -标准化((x-mean)/sd)
N2 -位置标准化((x-median)/mad)
N3 -单元化((x-mean)/range)
N3a -位置单元化(x-median /range)
N4 -最小值为零的单元化((x-min)/范围)
N5 -归一化范围<-1,1> ((x-mean)/max(abs(x-mean)))
N5a -位置归一化范围<-1,1> ((x-median)/max(abs(x-median)))
N6 -商变换(x/sd)
N6a -位置商变换(x/mad)
N7 -商变换(x/range)
N8 -商变换(x/max)
N9 -商数变换(x/mean)
N9a -位置商变换(x/median)
N10 -商变换(x/sum)
n11 -商变换(x/√(SSQ))
N12 -归一化((x-mean)/根号(sum((x-mean)^2))
N12a -位置归一化((x-median)/平方根(sum(x-median)^2))
N13 -归一化,中心点为0 ((x-midrange)/(range/2))
归一化 "列" -由变量归一化,"行" -由对象归一化