我有一个名为spam的数据集,其中包含58列和约3500行与垃圾邮件相关的数据。

我计划将来在这个数据集上运行一些线性回归,但我想事先做一些预处理,并将列标准化,使其具有零平均值和单位方差。

有人告诉我,最好的方法是用R,所以我想问,如何用R实现归一化?我已经正确加载了数据,我只是在寻找一些包或方法来执行这个任务。


当前回答

意识到这个问题已经很老了,一个答案已经被接受了,我将提供另一个答案供参考。

缩放是有限的,因为它缩放所有变量。下面的解决方案只允许缩放特定的变量名,同时保持其他变量不变(变量名可以动态生成):

library(dplyr)

set.seed(1234)
dat <- data.frame(x = rnorm(10, 30, .2), 
                  y = runif(10, 3, 5),
                  z = runif(10, 10, 20))
dat

dat2 <- dat %>% mutate_at(c("y", "z"), ~(scale(.) %>% as.vector))
dat2

这给了我这个:

> dat
          x        y        z
1  29.75859 3.633225 14.56091
2  30.05549 3.605387 12.65187
3  30.21689 3.318092 13.04672
4  29.53086 3.079992 15.07307
5  30.08582 3.437599 11.81096
6  30.10121 4.621197 17.59671
7  29.88505 4.051395 12.01248
8  29.89067 4.829316 12.58810
9  29.88711 4.662690 19.92150
10 29.82199 3.091541 18.07352

and

> dat2 <- dat %>% mutate_at(c("y", "z"), ~(scale(.) %>% as.vector))
> dat2
          x          y           z
1  29.75859 -0.3004815 -0.06016029
2  30.05549 -0.3423437 -0.72529604
3  30.21689 -0.7743696 -0.58772361
4  29.53086 -1.1324181  0.11828039
5  30.08582 -0.5946582 -1.01827752
6  30.10121  1.1852038  0.99754666
7  29.88505  0.3283513 -0.94806607
8  29.89067  1.4981677 -0.74751378
9  29.88711  1.2475998  1.80753470
10 29.82199 -1.1150515  1.16367556

编辑1(2016):处理朱利安的评论:规模的输出是Nx1矩阵,所以理想情况下,我们应该添加一个as。向量,将矩阵类型转换回向量类型。谢谢朱利安!

编辑2(2019):引用杜乔·A。对于最新的dplyr(0.8版本),您需要更改dplyr::funcs with list,如dat %>% mutate_each_(list(~scale(.) %>% as.vector), vars=c("y","z"))

EDIT 3(2020):感谢@mj_whales:旧的解决方案已弃用,现在我们需要使用mutate_at。

其他回答

使用“recommderlab”包。下载并安装软件包。 这个包内置了一个命令“Normalize”。它还允许你从众多归一化方法中选择一种即"中心"或" z分数" 请参考以下示例:

## create a matrix with ratings
m <- matrix(sample(c(NA,0:5),50, replace=TRUE, prob=c(.5,rep(.5/6,6))),nrow=5, ncol=10, dimnames = list(users=paste('u', 1:5, sep=&rdquo;), items=paste('i', 1:10, sep=&rdquo;)))

## do normalization
r <- as(m, "realRatingMatrix")
#here, 'centre' is the default method
r_n1 <- normalize(r) 
#here "Z-score" is the used method used
r_n2 <- normalize(r, method="Z-score")

r
r_n1
r_n2

## show normalized data
image(r, main="Raw Data")
image(r_n1, main="Centered")
image(r_n2, main="Z-Score Normalization")

我假设你想要的是均值为0,标准差为1。如果你的数据在一个数据框架中,所有的列都是数值的,你可以简单地调用数据上的缩放函数来做你想做的事情。

dat <- data.frame(x = rnorm(10, 30, .2), y = runif(10, 3, 5))
scaled.dat <- scale(dat)

# check that we get mean of 0 and sd of 1
colMeans(scaled.dat)  # faster version of apply(scaled.dat, 2, mean)
apply(scaled.dat, 2, sd)

使用内置函数是有品位的。比如这只猫:

折叠包提供了最快的缩放函数-在c++中使用Welfords在线算法实现:

dat <- data.frame(x = rnorm(1e6, 30, .2), 
                  y = runif(1e6, 3, 5),
                  z = runif(1e6, 10, 20))

library(collapse)
library(microbenchmark)
microbenchmark(fscale(dat), scale(dat))

Unit: milliseconds
        expr       min       lq      mean    median        uq      max neval cld
 fscale(dat)  27.86456  29.5864  38.96896  30.80421  43.79045 313.5729   100  a 
  scale(dat) 357.07130 391.0914 489.93546 416.33626 625.38561 793.2243   100   b

此外:fscale是S3通用的向量、矩阵和数据帧,还支持分组和/或加权缩放操作,以及缩放到任意均值和标准偏差。

在dplyr v0.7.4中,所有变量都可以使用mutate_all()缩放:

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(tibble)

set.seed(1234)
dat <- tibble(x = rnorm(10, 30, .2), 
              y = runif(10, 3, 5),
              z = runif(10, 10, 20))

dat %>% mutate_all(scale)
#> # A tibble: 10 x 3
#>         x      y       z
#>     <dbl>  <dbl>   <dbl>
#>  1 -0.827 -0.300 -0.0602
#>  2  0.663 -0.342 -0.725 
#>  3  1.47  -0.774 -0.588 
#>  4 -1.97  -1.13   0.118 
#>  5  0.816 -0.595 -1.02  
#>  6  0.893  1.19   0.998 
#>  7 -0.192  0.328 -0.948 
#>  8 -0.164  1.50  -0.748 
#>  9 -0.182  1.25   1.81  
#> 10 -0.509 -1.12   1.16

可以使用mutate_at()排除特定的变量:

dat %>% mutate_at(scale, .vars = vars(-x))
#> # A tibble: 10 x 3
#>        x      y       z
#>    <dbl>  <dbl>   <dbl>
#>  1  29.8 -0.300 -0.0602
#>  2  30.1 -0.342 -0.725 
#>  3  30.2 -0.774 -0.588 
#>  4  29.5 -1.13   0.118 
#>  5  30.1 -0.595 -1.02  
#>  6  30.1  1.19   0.998 
#>  7  29.9  0.328 -0.948 
#>  8  29.9  1.50  -0.748 
#>  9  29.9  1.25   1.81  
#> 10  29.8 -1.12   1.16

由reprex包于2018-04-24创建(v0.2.0)。

在我碰巧发现这条线索之前,我也有同样的问题。我有用户依赖的列类型,所以我写了一个for循环遍历它们并获得所需的列。也许有更好的方法,但这个方法很好地解决了问题:

 for(i in 1:length(colnames(df))) {
        if(class(df[,i]) == "numeric" || class(df[,i]) == "integer") {
            df[,i] <- as.vector(scale(df[,i])) }
        }

作为。向量是一个必要的部分,因为scale做rownames x 1矩阵这通常不是你想要的在data。frame中。